Skip to main content
Log in

Partially fluorinated, multication cross-linked poly(arylene piperidinium) membranes with improved conductivity and reduced swelling for fuel cell application

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

As an important component in alkaline membrane fuel cells, anion exchange membrane (AEM) often suffers from the tradeoff between ionic conductivity and chemical/dimensional stability. We herein report a partially fluorinated poly(arylene piperidinium) AEM with multication cross-links, which was synthesized by copolymerizing 1,1,1-trifluoroacetone, N-methyl-4-piperidone, biphenyl, and subsequent cross-linking with N1, N6-bis(6-bromohexyl)-N1, N1, N6, N6-tetramethylhexane-1,6-diammonium bromide. The resultant AEM exhibited an excellent OH conductivity of 148.7 mS cm−1 at 80 °C (IEC = 2.9 mmol g−1) due to the multication structure, which may promote microphase separation to produce wide ion-conducting channels. Compared with those without partial fluorination, the fluorinated AEM showed lower swelling ratio (33% vs. 58% at 80 °C). The ionic conductivity of the AEM remained by 85% after it was treated 1700 h in 1 M NaOH at 80 °C. In addition, the H2/O2 fuel cell assembled with the AEM yielded a peak power density of 208 mW cm−2 at 60 °C. Our work successfully demonstrates the synergistic effect of partially fluorinated backbone and multication cross-linked structure to inhibit membrane swelling while keeping high conductivity; it is beneficial for better balancing AEM conductivity and robustness.

Partially fluorinated poly(arylene piperidinium) AEM with multication cross-links. The fabricated membrane showed higher conductivity and much lower swelling compared with its non-fluorinated counterpart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Shin DW, Guiver MD, Lee YM (2017) Hydrocarbon-based polymer electrolyte membranes: importance of morphology on ion transport and membrane stability. Chem Rev 117(6):4759–4805

    CAS  PubMed  Google Scholar 

  2. Wang YJ, Qiao J, Baker R, Zhang J (2013) Alkaline polymer electrolyte membranes for fuel cell applications. Chem Soc Rev 42(13):5768–5787

    CAS  PubMed  Google Scholar 

  3. Varcoe JR, Atanassov P, Dekel DR, Herring AM, Hickner MA, Kohl PA, Kucernak AR, Mustain WE, Nijmeijer K, Scott K, Xu T, Zhuang L (2014) Anion-exchange membranes in electrochemical energy systems. Energy Environ Sci 7(10):3135–3191

    CAS  Google Scholar 

  4. Pan ZF, An L, Zhao TS, Tang ZK (2018) Advances and challenges in alkaline anion exchange membrane fuel cells. Prog Energy Combust 66:141–175

    Google Scholar 

  5. Park EJ, Kim YS (2018) Quaternized aryl ether-free polyaromatics for alkaline membrane fuel cells: synthesis, properties, and performance – a topical review. J Mater Chem A 6(32):15456–15477

    CAS  Google Scholar 

  6. Dekel DR, Willdorf S, Ash U, Amar M, Pusara S, Dhara S, Srebnik S, Diesendruck CE (2018) The critical relation between chemical stability of cations and water in anion exchange membrane fuel cells environment. J Power Sources 375:351–360

    CAS  Google Scholar 

  7. Ertem SP, Tsai T-H, Donahue MM, Zhang W, Sarode H, Liu Y, Seifert S, Herring AM, Coughlin EB (2016) Photo-cross-linked anion exchange membranes with improved water management and conductivity. Macromolecules 49(1):153–161

    CAS  Google Scholar 

  8. Gu S, Cai R, Luo T, Chen Z, Sun M, Liu Y, He G, Yan Y (2009) A soluble and highly conductive ionomer for high-performance hydroxide exchange membrane fuel cells. Angew Chem Int Ed Engl 48(35):6499–6502

    CAS  PubMed  Google Scholar 

  9. Patel HA, Selberg J, Salah D, Chen H, Liao Y, Mohan Nalluri SK, Farha OK, Snurr RQ, Rolandi M, Stoddart JF (2018) Proton conduction in Tröger’s base-linked poly(crown ether)s. ACS Appl Mater Interfaces 10(30):25303–25310

    CAS  PubMed  Google Scholar 

  10. Chen J, Li C, Wang J, Li L, Wei Z (2017) A general strategy to enhance the alkaline stability of anion exchange membranes. J Mater Chem A 5(13):6318–6327

    CAS  Google Scholar 

  11. Luo T, Abdu S, Wessling M (2018) Selectivity of ion exchange membranes: a review. J Membrane Sci 555:429–454

    CAS  Google Scholar 

  12. Liu J, Yan X, Gao L, Hu L, Wu X, Dai Y, Ruan X, He G (2019) Long-branched and densely functionalized anion exchange membranes for fuel cells. J Membrane Sci 581:82–92

    CAS  Google Scholar 

  13. Mohanty AD, Ryu CY, Kim YS, Bae C (2015) Stable elastomeric anion exchange membranes based on quaternary ammonium-tethered polystyrene-b-poly(ethylene-co-butylene)-b-polystyrene Triblock copolymers. Macromolecules 48(19):7085–7095

    CAS  Google Scholar 

  14. Yang Z, Guo R, Malpass-Evans R, Carta M, McKeown NB, Guiver MD, Wu L, Xu T (2016) Highly conductive anion-exchange membranes from microporous Troger’s base polymers. Angew Chem Int Ed Engl 55(38):11499–11502

    CAS  PubMed  Google Scholar 

  15. Ishiwari F, Sato T, Yamazaki H, Kondo JN, Miyanishi S, Yamaguchi T, Fukushima T (2016) An anion-conductive microporous membrane composed of a rigid ladder polymer with a spirobiindane backbone. J Mater Chem A 4(45):17655–17659

    CAS  Google Scholar 

  16. Dang H-S, Jannasch P (2018) High-performing hydroxide exchange membranes with flexible tetra-piperidinium side chains linked by alkyl spacers. ACS Appl Energy Mater 1(5):2222–2231

    CAS  Google Scholar 

  17. Han J, Zhu L, Pan J, Zimudzi TJ, Wang Y, Peng Y, Hickner MA, Zhuang L (2017) Elastic long-chain multication cross-linked anion exchange membranes. Macromolecules 50(8):3323–3332

    CAS  Google Scholar 

  18. Zhu L, Peng X, Shang S-L, Kwasny MT, Zimudzi TJ, Yu X, Saikia N, Pan J, Liu Z-K, Tew GN, Mustain WE, Yandrasits M, Hickner MA (2019) High performance anion exchange membrane fuel cells enabled by Fluoropoly(olefin) membranes. Adv Funct Mater 29(26):1902059

    Google Scholar 

  19. Liu X, Wu D, Liu X, Luo X, Liu Y, Zhao Q, Li J, Dong D (2020) Perfluorinated comb-shaped cationic polymer containing long-range ordered main chain for anion exchange membrane. Electrochim Acta 336:135757

    CAS  Google Scholar 

  20. Olsson JS, Pham TH, Jannasch P (2019) Tuning poly(arylene piperidinium) anion-exchange membranes by copolymerization, partial quaternization and crosslinking. J Membrane Sci 578:183–195

    CAS  Google Scholar 

  21. Mahmoud AMA, Miyatake K (2018) Optimization of pendant chain length in partially fluorinated aromatic anion exchange membranes for alkaline fuel cells. J Mater Chem A 6(29):14400–14409

    Google Scholar 

  22. Lee W-H, Park EJ, Han J, Shin DW, Kim YS, Bae C (2017) Poly(terphenylene) anion exchange membranes: the effect of backbone structure on morphology and membrane property. ACS Macro Lett 6(5):566–570

    CAS  Google Scholar 

  23. Lee W-H, Kim YS, Bae C (2015) Robust hydroxide ion conducting poly(biphenyl alkylene)s for alkaline fuel cell membranes. ACS Macro Lett 4(8):814–818

    CAS  Google Scholar 

  24. Weiber EA, Jannasch P (2015) Polysulfones with highly localized imidazolium groups for anion exchange membranes. J Membrane Sci 481:164–171

    CAS  Google Scholar 

  25. Chen W, Yan X, Wu X, Huang S, Luo Y, Gong X, He G (2016) Tri-quaternized poly (ether sulfone) anion exchange membranes with improved hydroxide conductivity. J Membrane Sci 514:613–621

    CAS  Google Scholar 

  26. Lin CX, Zhuo YZ, Lai AN, Zhang QG, Zhu AM, Ye ML, Liu QL (2016) Side-chain-type anion exchange membranes bearing pendent imidazolium-functionalized poly(phenylene oxide) for fuel cells. J Membrane Sci 513:206–216

    CAS  Google Scholar 

  27. Lee JY, Lim D-H, Chae JE, Choi J, Kim BH, Lee SY, Yoon CW, Nam SY, Jang JH, Henkensmeier D, Yoo SJ, Kim J-Y, Kim H-J, Ham HC (2016) Base tolerant polybenzimidazolium hydroxide membranes for solid alkaline-exchange membrane fuel cells. J Membrane Sci 514:398–406

    CAS  Google Scholar 

  28. Zhu M, Zhang M, Chen Q, Su Y, Zhang Z, Liu L, Wang Y, An L, Li N (2017) Synthesis of midblock-quaternized triblock copolystyrenes as highly conductive and alkaline-stable anion-exchange membranes. Polym Chem 8(13):2074–2086

    CAS  Google Scholar 

  29. Zhang S, Zhu X, Jin C (2019) Development of a high-performance anion exchange membrane using poly(isatin biphenylene) with flexible heterocyclic quaternary ammonium cations for alkaline fuel cells. J Mater Chem A 7(12):6883–6893

    CAS  Google Scholar 

  30. Chen N, Lu C, Li Y, Long C, Zhu H (2019) Robust poly(aryl piperidinium)/N-spirocyclic poly(2,6-dimethyl-1,4-phenyl) for hydroxide-exchange membranes. J Membrane Sci 572:246–254

    CAS  Google Scholar 

  31. Wang J, Zhao Y, Setzler BP, Rojas-Carbonell S, Ben Yehuda C, Amel A, Page M, Wang L, Hu K, Shi L, Gottesfeld S, Xu B, Yan Y (2019) Poly(aryl piperidinium) membranes and ionomers for hydroxide exchange membrane fuel cells. Nat Energy 4(5):392–398

    CAS  Google Scholar 

  32. Chen N, Lu C, Li Y, Long C, Li Z, Zhu H (2019) Tunable multi-cations-crosslinked poly(arylene piperidinium)-based alkaline membranes with high ion conductivity and durability. J Membrane Sci 588:117120

    CAS  Google Scholar 

  33. Klumpp DA, Garza M, Jones A, Mendoza S (1999) Synthesis of aryl-substituted piperidines by superacid activation of piperidones. J Org Chem 64(18):6702–6705

    CAS  PubMed  Google Scholar 

  34. Olsson JS, Pham TH, Jannasch P (2018) Poly(arylene piperidinium) hydroxide ion exchange membranes: synthesis, alkaline stability, and conductivity. Adv Funct Mater 28(2):1702758

    Google Scholar 

  35. Pham TH, Olsson JS, Jannasch P (2018) Poly(arylene alkylene)s with pendant N-spirocyclic quaternary ammonium cations for anion exchange membranes. J Mater Chem A 6(34):16537–16547

    CAS  Google Scholar 

  36. Hu C, Zhang Q, Lin C, Lin Z, Li L, Soyekwo F, Zhu A, Liu Q (2018) Multi-cation crosslinked anion exchange membranes from microporous Tröger's base copolymers. J Mater Chem A 6(27):13302–13311

    CAS  Google Scholar 

  37. Zhu L, Yu X, Peng X, Zimudzi TJ, Saikia N, Kwasny MT, Song S, Kushner DI, Fu Z, Tew GN, Mustain WE, Yandrasits MA, Hickner MA (2019) Poly(olefin)-based anion exchange membranes prepared using Ziegler–Natta polymerization. Macromolecules 52(11):4030–4041

    CAS  Google Scholar 

  38. You W, Padgett E, MacMillan SN, Muller DA, Coates GW (2019) Highly conductive and chemically stable alkaline anion exchange membranes via ROMP of trans-cyclooctene derivatives. Proc Natl Acad Sci 116(20):9729–9734

    CAS  PubMed  Google Scholar 

  39. Xie F, Shao Z, Gao X, Hao J, Song W, Yu H, Yi B (2019) Facile preparation of porefilled membranes based on poly(ionic liquid) with quaternary ammonium and tertiary amine head groups for AEMFCs. Solid State Ionics 338:58–65

    CAS  Google Scholar 

  40. Zhang W, Qiu X, Ueda M, Sui Y, Hu H, Zhang X, Wang L (2018) Synthesis and properties of poly(phenylene- co -arylene ether ketone)s with five quaternary ammonium groups on a phenyl unit for anion-exchange membranes. Solid State Ionics 314:187–194

    CAS  Google Scholar 

  41. Liu L, Huang G, Kohl PA (2018) Anion conducting multiblock copolymers with multiple head-groups. J Mater Chem A 6(19):9000–9008

    CAS  Google Scholar 

  42. Zhu L, Yu X, Hickner MA (2018) Exploring backbone-cation alkyl spacers for multi-cation side chain anion exchange membranes. J Power Sources 375:433–441

    CAS  Google Scholar 

  43. Qaisrani NA, Ma L, Liu J, Hussain M, Li L, Li P, Gong S, Zhang F, He G (2019) Anion exchange membrane with a novel quaternized ammonium containing long ether substituent. J Membrane Sci 581:293–302

    CAS  Google Scholar 

  44. Xue J, Liu X, Zhang J, Yin Y, Guiver MD (2020) Poly(phenylene oxide)s incorporating N-spirocyclic quaternary ammonium cation/cation strings for anion exchange membranes. J Membrane Sci 595:117507

    Google Scholar 

  45. Son TY, Ko TH, Vijayakumar V, Kim K, Nam SY (2020) Anion exchange composite membranes composed of poly(phenylene oxide) containing quaternary ammonium and polyethylene support for alkaline anion exchange membrane fuel cell applications. Solid State Ionics 344:115153

    CAS  Google Scholar 

  46. Zhang Y, Chen W, Yan X, Zhang F, Wang X, Wu X, Pang B, Wang J, He G (2019) Ether spaced N-spirocyclic quaternary ammonium functionalized crosslinked polysulfone for high alkaline stable anion exchange membranes. J Membrane Sci 117650

Download references

Funding

The study was financially supported by the Natural Science Foundation of China (Grant no. 21776042), Science and Technology Innovation Fund of Dalian (2018J12GX052), the Fundamental Research Funds for the Central Universities of China (Grant no. DUT19ZD214, DUT19TD33), and the National Key Research and Development Program of China (Grant no. 2016YFB0101203).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengxiang Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, Y., Ma, L., Yu, Q. et al. Partially fluorinated, multication cross-linked poly(arylene piperidinium) membranes with improved conductivity and reduced swelling for fuel cell application. Ionics 26, 5617–5627 (2020). https://doi.org/10.1007/s11581-020-03721-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03721-3

Keywords

Navigation