Skip to main content

Advertisement

Log in

A flexible free-standing cathode based on graphene-like MoSe2 nanosheets anchored on N-doped carbon nanofibers for rechargeable aluminum-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Graphene-like MoSe2 nanosheets anchored on N-doped carbon nanofiber (MoSe2@NCNF) composite are prepared and serve as a flexible free-standing cathode material of rechargeable aluminum-ion batteries(AIBs) without any additives or processing procedures. The aluminum storage mechanism of MoSe2 is investigated by ex situ X-ray diffraction, which is evidenced to be that Al3+ intercalates into the MoSe2 lattice related to the interlayer space of (002) plane during the discharge process, and the reversible extraction process occurs during the charge process. The conductive 3D network interlaced by NCNFs facilitates electron transfer and ion diffusion. Furthermore, the MoSe2 nanosheets anchored on the NCNF surface are well-dispersed without aggregation, which results in improved diffusion kinetics and a high utilization rate of the active material for aluminum storage. Profiting from the synergistic effect between active material and carbon template, MoSe2@NCNF cathode achieves a high initial discharge capacity of 296.3 mA h g− 1 at a current density of 100 mA g− 1, even after 200 cycles, the discharge capacity remains stable at 169.9 mA h g− 1 with negligible fading rate. The flexible free-standing composite material with outstanding electrochemical performances may provide new ideas for designing high-performance cathode materials for AIBs and other flexible energy storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yang Z, Zhang J, Kintner-Meyer MC, Lu X, Choi D, Lemmon JP, Liu J (2011) Electrochemical energy storage for green grid. Chem Rev 111(5):3577

    CAS  Google Scholar 

  2. Dunn B, Kamath H, Tarascon JM (2011) Electrical energy storage for the grid: a battery of choices. Science 334(6058):928

    CAS  PubMed  Google Scholar 

  3. Wang B, Zhao F, Du G, Porter S, Liu Y, Zhang P, Cheng Z, Liu HK, Huang Z (2016) Boron-doped anatase TiO2 as a high-performance anode material for sodium-ion batteries. ACS Appl Mater Interfaces 8(25):16009

    CAS  PubMed  Google Scholar 

  4. Zhao F, Wang B, Tang Y, Ge H, Huang Z, Liu HK (2015) Niobium doped anatase TiO2 as an effective anode material for sodium-ion batteries. J Mater Chem A 3(45):22969

    CAS  Google Scholar 

  5. Zhu YH, Yang X, Bao D, Bie X F, Sun T, Wang S, Jiang YS, Zhang XB, Yan JM, Jiang Q (2018) High-energy-density flexible potassium-ion battery based on patterned electrodes. Joule 2(4):736

    CAS  Google Scholar 

  6. Wang M, Jiang C, Zhang S, Song X, Tang Y, Cheng HM (2018) Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage. Nat Chem 10 (6):667

    CAS  PubMed  Google Scholar 

  7. Song J, Noked M, Gillette E, Duay J, Rubloff G, Lee SB (2015) Activation of a MnO2 cathode by water-stimulated Mg2+ insertion for a magnesium ion battery. Phys Chem Chem Phys 17(7):5256

    CAS  PubMed  Google Scholar 

  8. Jayaprakash N, Das S, Archer L (2011) The rechargeable aluminum-ion battery. Chem Commun 47 (47):12610

    CAS  Google Scholar 

  9. Elia GA, Marquardt K, Hoeppner K, Fantini S, Lin R, Knipping E, Peters W, Drillet J F, Passerini S, Hahn R (2016) An overview and future perspectives of aluminum batteries. Adv Mater 28 (35):7564

    CAS  PubMed  Google Scholar 

  10. Muñoz-Torrero D, Leung P, García-Quismondo E, Ventosa E, Anderson M, Palma J, Marcilla R (2018) Investigation of different anode materials for aluminium rechargeable batteries. J Power Sources 374:77

    Google Scholar 

  11. Chen H, Xu H, Zheng B, Wang S, Huang T, Guo F, Gao W, Gao C (2017) Oxide film efficiently suppresses dendrite growth in aluminum-ion battery. ACS Appl Mater Interfaces 9(27):22628

    CAS  PubMed  Google Scholar 

  12. Jung SC, Kang Y J, Yoo DJ, Choi JW, Han YK (2016) Flexible few-layered graphene for the ultrafast rechargeable aluminum-ion battery. J Phys Chem C 120(25):13384

    CAS  Google Scholar 

  13. Lin MC, Gong M, Lu B, Wu Y, Wang DY, Guan M, Angell M, Chen C, Yang J, Hwang BJ et al (2015) An ultrafast rechargeable aluminium-ion battery. Nature 520(7547):324

    CAS  Google Scholar 

  14. Elia GA, Hasa I, Greco G, Diemant T, Marquardt K, Hoeppner K, Behm RJ, Hoell A, Passerini S, Hahn R (2017) Insights into the reversibility of aluminum graphite batteries. J Mater Chem A 5 (20):9682

    CAS  Google Scholar 

  15. Zhang L, Chen L, Luo H, Zhou X, Liu Z (2017) Large-sized few-layer graphene enables an ultrafast and long-life aluminum-ion battery. Adv Energy Mater 7(15):1700034

    Google Scholar 

  16. Wu Y, Gong M, Lin MC, Yuan C, Angell M, Huang L, Wang DY, Zhang X, Yang J, Hwang BJ et al (2016) 3D graphitic foams derived from chloroaluminate anion intercalation for ultrafast aluminum-ion battery. Adv Mater 28(41):9218

    CAS  PubMed  Google Scholar 

  17. Gao Y, Zhu C, Chen Z, Lu G (2017) Understanding ultrafast rechargeable aluminum-ion battery from first-principles. J Phys Chem C 121(13):7131

    CAS  Google Scholar 

  18. Yu X, Wang B, Gong D, Xu Z, Lu B (2017) Graphene nanoribbons on highly porous 3D graphene for high-capacity and ultrastable Al-ion batteries. Adv Mater 29(4):1604118

    Google Scholar 

  19. Chen H, Guo F, Liu Y, Huang T, Zheng B, Ananth N, Xu Z, Gao W, Gao C (2017) A defect-free principle for advanced graphene cathode of aluminum-ion battery. Adv Mater 29(12):1605958

    Google Scholar 

  20. Wang DY, Wei CY, Lin MC, Pan CJ, Chou HL, Chen HA, Gong M, Wu Y, Yuan C, Angell M et al (2017) Advanced rechargeable aluminium ion battery with a high-quality natural graphite cathode. Nat Commun 8:14283

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Li Z, Niu B, Liu Y, Li J, Kang F (2018) Prelithiation treatment of graphite as cathode material for rechargeable aluminum batteries. Electrochim Acta 263:68

    CAS  Google Scholar 

  22. Rani JV, Kanakaiah V, Dadmal T, Rao MS, Bhavanarushi S (2013) Fluorinated natural graphite cathode for rechargeable ionic liquid based aluminum-ion battery. J Electr Soc 160(10):A1781

    CAS  Google Scholar 

  23. Zhao X, Yao W, Gao W, Chen H, Gao C (2017) Wet-spun superelastic graphene aerogel millispheres with group effect. Adv Mater 29(35):1701482

    Google Scholar 

  24. Cai T, Zhao L, Hu H, Li T, Li X, Guo S, Li Y, Xue Q, Xing W, Yan Z et al (2018) Stable CoSe2/carbon nanodice@reduced graphene oxide composites for high-performance rechargeable aluminum-ion batteries. Energy Environ Sci 11(9):2341

    CAS  Google Scholar 

  25. Hu Y, Ye D, Luo B, Hu H, Zhu X, Wang S, Li L, Peng S, Wang L (2018) A binder-free and free-standing cobalt sulfide@carbon nanotube cathode material for aluminum-ion batteries. Adv Mater 30(2):1703824

    Google Scholar 

  26. Li H, Yang H, Sun Z, Shi Y, Cheng HM, Li F (2019) A highly reversible Co3S4 microsphere cathode material for aluminum-ion batteries. Nano Energy 56:100

    CAS  Google Scholar 

  27. Zhang X, Wang S, Tu J, Zhang G, Li S, Tian D, Jiao S (2018) Flower-like vanadium suflide/reduced graphene oxide composite: an energy storage material for aluminum-ion batteries. ChemSusChem 11(4):709

    CAS  PubMed  Google Scholar 

  28. Yu Z, Kang Z, Hu Z, Lu J, Zhou Z, Jiao S (2016) Hexagonal NiS nanobelts as advanced cathode materials for rechargeable Al-ion batteries. Chem Commun 52(68):10427

    CAS  Google Scholar 

  29. Wang S, Jiao S, Wang J, Chen HS, Tian D, Lei H, Fang DN (2016) High-performance aluminum-ion battery with CuS@C microsphere composite cathode. ACS nano 11(1):469

    CAS  PubMed  Google Scholar 

  30. Li Z, Niu B, Liu J, Li J, Kang F (2018) Rechargeable aluminum-ion battery based on MoS2 microsphere cathode. ACS Appl Mater Interfaces 10(11):9451

    CAS  PubMed  Google Scholar 

  31. Geng L, Lv G, Xing X, Guo J (2015) Reversible electrochemical intercalation of aluminum in Mo6S8. Chem Mater 27(14):4926

    CAS  Google Scholar 

  32. Geng L, Scheifers JP, Fu C, Zhang J, Fokwa BP, Guo J (2017) Titanium sulfides as intercalation-type cathode materials for rechargeable aluminum batteries. ACS Appl Mater Interfaces 9(25):21251

    CAS  PubMed  Google Scholar 

  33. Wu L, Sun R, Xiong F, Pei C, Han K, Peng C, Fan Y, Yang W, An Q, Mai L (2018) A rechargeable aluminum-ion battery based on a VS2 nanosheet cathode. Phys Chem Chem Phys 20(35):22563

    CAS  PubMed  Google Scholar 

  34. Hong H, Liu J, Huang H, Atangana Etogo C, Yang X, Guan B, Zhang L (2019) Ordered macro-microporous metal-organic framework single crystals and their derivatives for rechargeable aluminum-ion batteries. J Am Chem Soc 141(37):14764

    CAS  PubMed  Google Scholar 

  35. Liu J, Li Z, Huo X, Li J (2019) Nanosphere-rod-like Co3O4 as high performance cathode material for aluminium ion batteries. J Power Sources 422:49

    CAS  Google Scholar 

  36. Reed LD, Menke E (2013) The roles of V2O5 and stainless steel in rechargeable Al-ion batteries. J Electrochem Soc 160(6):A915

    CAS  Google Scholar 

  37. Wang H, Bai Y, Chen S, Luo X, Wu C, Wu F, Lu J, Amine K (2014) Binder-free V2O5 cathode for greener rechargeable aluminum battery. ACS Appl Mater Interfaces 7(1):80

    PubMed  Google Scholar 

  38. Tu J, Lei H, Yu Z, Jiao S (2018) Ordered WO3−x nanorods: facile synthesis and their electrochemical properties for aluminum-ion batteries. Chem Commun 54(11):1343

    CAS  Google Scholar 

  39. Wei J, Chen W, Chen D, Yang K (2017) Molybdenum oxide as cathode for high voltage rechargeable aluminum ion battery. J Electrochem Soc 164(12):A2304

    CAS  Google Scholar 

  40. Tan P, Chen B, Xu H, Cai W, He W, Liu M, Shao Z, Ni M (2018) Co3O4 nanosheets as active material for hybrid Zn batteries. Small 14(21):1800225

    Google Scholar 

  41. Cohn G, Ma L, Archer LA (2015) A novel non-aqueous aluminum sulfur battery. J Power Sources 283:416

    CAS  Google Scholar 

  42. Yu X, Boyer MJ, Hwang GS, Manthiram A (2018) Room-temperature aluminum-sulfur batteries with a lithium-ion-mediated ionic liquid electrolyte. Chem 4(3):586

    CAS  Google Scholar 

  43. Tian H, Zhang S, Meng Z, He W, Han W Q (2017) Rechargeable aluminum/iodine battery redox chemistry in ionic liquid electrolyte. ACS Energy Lett 2(5):1170

    CAS  Google Scholar 

  44. Nacimiento F, Cabello M, Alcántara R, Lavela P, Tirado J L (2018) NASICON-type Na3V2(PO4)3 as a new positive electrode material for rechargeable aluminium battery. Electrochim Acta 260:798

    CAS  Google Scholar 

  45. Wu F, Bai Y, Yang H, Wu C (2019) Paving the path toward reliable cathode materials for aluminum-ion batteries. Adv Mater 31(16):1806510

    Google Scholar 

  46. Yang H, Li H, Li J, Sun Z, He K, Cheng H M, Li F (2019) The rechargeable aluminum battery: opportunities and challenges Angewandte Chemie

  47. Zhang Y, Liu S, Ji Y, Ma J, Yu H (2018) Emerging nonaqueous aluminum-ion batteries: challenges, status, and perspectives. Adv Mater 30(38):1706310

    Google Scholar 

  48. Ramakrishna Matte H, Gomathi A, Manna AK, Late DJ, Datta R, Pati SK, Rao C (2010) MoS2 and WS2 analogues of graphene. Angewandte Chemie International Edition 49(24):4059

    Google Scholar 

  49. Jeong SY, Ghosh S, Kim JK, Kang DW, Jeong SM, Kang YC, Cho JS (2019) Multi-channel-contained few-layered MoSe2 nanosheet/N-doped carbon hybrid nanofibers prepared using diethylenetriamine as anodes for high-performance sodium-ion batteries. J Ind Eng Chem 75:100

    CAS  Google Scholar 

  50. Lai F, Yong D, Ning X, Pan B, Miao Y E, Liu T (2017) Carbon nanofibers: bionanofiber assisted decoration of few-layered MoSe2 nanosheets on 3D conductive networks for efficient hydrogen evolution Small 13(7)

  51. Luo L, Song J, Song L, Zhang H, Bi Y, Liu L, Yin L, Wang F, Wang G (2019) Flexible conductive anodes based on 3D hierarchical Sn/NS-CNFs@rGO network for sodium-ion batteries. Nano-Micro Lett 11(1):63

    CAS  Google Scholar 

  52. Liu Y, Zhang N, Jiao L, Chen J (2015) Tin nanodots encapsulated in porous nitrogen-doped carbon nanofibers as a free-standing anode for advanced sodium-ion batteries. Adv Mater 27(42):6702

    CAS  PubMed  Google Scholar 

  53. Lai Y, Chen W, Zhang Z, Gan Y, Yang X, Li J (2016) Two-dimensional graphene-like MoSe2 nanosheets anchored on hollow carbon nanofibers as a cathode catalyst for rechargeable Li-O2 batteries. Rsc Adv 6(24):19843

    CAS  Google Scholar 

  54. Nan D, Huang ZH, Lv R, Yang L, Wang JG, Shen W, Lin Y, Yu X, Ye L, Sun H et al (2014) Nitrogen-enriched electrospun porous carbon nanofiber networks as high-performance free-standing electrode materials. J Mater Chem A 2(46):19678

    CAS  Google Scholar 

  55. Cao Y, Lu H, Hong Q, Xu B, Wang J, Deng Y, Yang W, Cai W (2019) Synthesis of Ag/Co@CoO NPs anchored within N-doped hierarchical porous hollow carbon nanofibers as a superior free-standing cathode for LiO2 batteries. Carbon 144:280

    CAS  Google Scholar 

  56. Chen X, Zeng S, Muheiyati H, Zhai Y, Li C, Ding X, Wang L, Wang D, Xu L, He Y et al (2019) Double-shelled Ni-Fe-P/N-doped carbon nanobox derived from Prussian blue analogue as electrode material for K-ion batteries and Li-S batteries ACS Energy Letters

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huimin Lu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Lu, H., Cao, Y. et al. A flexible free-standing cathode based on graphene-like MoSe2 nanosheets anchored on N-doped carbon nanofibers for rechargeable aluminum-ion batteries. Ionics 26, 3405–3413 (2020). https://doi.org/10.1007/s11581-020-03476-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03476-x

Keywords

Navigation