Skip to main content
Log in

Improving the electrochemical performance of Li2MnO3 cathode material by micro-substitution of nickel to manganese

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A new orientation of replacing Mn with Ni by sol-gel method to improve the electrochemical performance of Li2MnO3 is proposed. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses reveal that the Ni element is distributed in the sample evenly. The Ni-LMO sample exhibits a great improvement on the rate capability and practical capacity compared with the LMO sample. Specimen Li2Ni0.03Mn0.985O3 delivers an initial discharge capacity of 174.6 mA h g−1 with an excellent capacity of 234.2 mA h g−1 after 10 cycles at 0.1 C, and 198.1 mA h g−1 with a capacity retention of 96.8% after 50 cycles. The CV curve indicates that Ni doped will prevent the first cycle from layer to spinel phase and inhibiting the rate of transition during cycling. Electrochemical impedance spectroscopy (EIS) results confirmed that Ni doped reduced the charge-transfer resistance and improved the electrochemical reaction kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Boulineau A, Croguennec L, Delmas C, Weill F (2009) Reinvestigation of Li2MnO3 structure: electron diffraction and high resolution TEM. Chem Mater 21:4216–4222

    Article  CAS  Google Scholar 

  2. Goodenough JB (1994) Design considerations. Solid State Ionics 69:184

    Article  CAS  Google Scholar 

  3. Ohzuku T, Ueda A (1994) Why transition metal (di) oxides are the most attractive materials for batteries. Solid State Ionics 69:201

    Article  CAS  Google Scholar 

  4. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414(6861):359–367

    Article  CAS  Google Scholar 

  5. Wang Y, Fabing S, Wood CD, Lee JY, Zhao XS (2008) Preparation and characterization of carbon nanospheres as anode materials in lithium-ion secondary batteries. Ind Eng Chem Res 47:2294–2300

    Article  CAS  Google Scholar 

  6. Strobel P, Lambertandron B (1988) Crystallographic and magnetic structure of Li2MnO3. J Solid State Chem 75(1):90–98

    Article  CAS  Google Scholar 

  7. Meng YS, Ceder G, Grey CP, Yoon WS, Jiang M, Breger J, Shao-Horn Y (2005) Cation ordering in layered O3 Li [Ni\r \rx\r Li\r1/3-2\rx\r/3\r Mn\r2/3-\rx\r/3\r]O\r2\r (0 ≤\rx\r ≤\r1\r). Chem Mater 17(9):2386–2394

    Article  CAS  Google Scholar 

  8. Park SH, Sato Y, Kim JK, Lee YS (2007) Powder property and electrochemical characterization of Li2MnO3 material. Mater Chem Phys 102:225–230

    Article  CAS  Google Scholar 

  9. Wang R, He X, He L (2013) Atomic structure of Li2MnO3 after partial delithiation and re-lithiation. Adv Energy Mater 3(10):1358–1367

    Article  CAS  Google Scholar 

  10. Lu ZH, Dahn JR (2002) Optimization of synthesis condition and electrode fabrication for spinel LiMn2O4 cathode. J Electrochem Soc 149:A815–A822

    Article  CAS  Google Scholar 

  11. Ji H, Yang G, Miao X, Hong A (2010) Efficient microwave hydrothermal synthesis of nanocrystalline orthorhombic LiMnO2 cathodes for lithium batteries. Electrochim Acta 55:3392–3397

    Article  CAS  Google Scholar 

  12. XianZhu F, Wang X, Peng HF, Ke FS, Lei JH, Huang L, Lin JD, Liao DW (2010) Low temperature synthesis of LiNiO2@LiCoO2 as cathode materials for lithium ion batteries. J Solid State Electrochem 14:1117–1124

    Article  Google Scholar 

  13. Xiang Y, Wu X (2018) Enhanced electrochemical performances of Li2MnO3 cathode materials by Al doping. Ionics 24:83–89

    Article  CAS  Google Scholar 

  14. Oishi M, Yogi C, Watanabe I, Ohta T, Orikasa Y, Uchimoto Y, Ogumi Z (2015) Direct observation of reversible charge compensation by oxygen ion in Li-rich manganese layered oxide positive electrode material, Li1.16Ni0.15Co0.19 Mn0.50 O2. J Power Sources 276:89–94

    Article  CAS  Google Scholar 

  15. He Z, Wang Z, Huang Z, Chen H, Li X, Guo H (2015) A novel architecture designed for lithium rich layered Li [Li0.2Mn0.54Ni0.13Co0.13]O2 oxides for lithium-ion batteries. J Mater Chem A 3:16817–16823

    Article  CAS  Google Scholar 

  16. Kalyani P, Chitra S, Mohan T, Gopukumar S (1999) Lithium metal rechargeable cells using Li2MnO3 as the positive electrode. J Power Sources 80:103–106

    Article  CAS  Google Scholar 

  17. Ying J, Jiang C, Wan C (2004) Preparation and characterization of high-density spherical LiCoO2 cathode material for lithium ion batteries. J Power Sources 129:264–269

    Article  CAS  Google Scholar 

  18. Kali P, Chitra S, Mohan T, Gopukumar S (1999) Lithium metal rechargeable cells using Li2MnO3 as the positive electrode. J Power Sources 80:103–101

    Article  Google Scholar 

  19. Gao Y, Ma J, Wang X, Lu X, Bai Y, Wang Z, Chen L (2014) Selecting substituent elements for Li-rich Mn-based cathode materials by density functional theory (DFT) calculations. J Mater Chem A 2:4811

    Article  CAS  Google Scholar 

  20. Castro LT, Shojan J, Julien CM, Huq A, Dhital C, Paranthamane MP, Katiyar RS, Manivannan A (2015) Synthesis, characterization and electrochemical performance of Al-substituted Li2MnO3. Mater Sci and Engineering B 201:13–22

    Article  Google Scholar 

  21. Mori D, Sakaebe H, Shikano M (2011) Synthesis, phase relation and electrical and electrochemical properties of ruthenium-substituted Li2MnO3 as a novel cathode material. J Power Sources 196:6934–6938

    Article  CAS  Google Scholar 

  22. Francis Amalraj S, Markovsky B, Sharon D (2012) Study of the electrochemical behavior of the “inactive” Li2MnO3. Electrochim Acta 78:32–39

    Article  CAS  Google Scholar 

  23. Xiao RJ, Li H, Chen LQ (2012) Density functional investigation on Li2MnO3. Chem Mater 24:4242–4251

    Article  CAS  Google Scholar 

  24. Zhao W, Xiong L, Xu Y, Xiao X, Wang J, Ren Z (2016) Magnesium substitution to improve the electrochemical performance of layered Li2MnO3 positive-electrode material. J Power Sources 330:37–44

    Article  CAS  Google Scholar 

  25. Amalraj SF, Sharon D, Talianker M (2013) Study of the nanosized Li2MnO3: electrochemical behavior, structure, magnetic properties, and vibrational modes. Electrochim Acta 97:259–270

    Article  CAS  Google Scholar 

  26. Dong X, Xu Y, Xiong L, Sun X, Zhang Z (2013) Sodium substitution for partial lithium to significantly enhance the cycling stability of Li2MnO3 cathode material. J Power Sources 243:78–87

    Article  CAS  Google Scholar 

  27. Park SH, Ahn HS, Park GJ (2008) Cycle mechanism and electrochemical properties of lithium manganese oxide prepared using different Mn sources. Mater Chem and Phys 112:696–701

    Article  CAS  Google Scholar 

  28. Matsunaga T, Komatsu H, Shimoda K, Minato T, Yonemura M, Kamiyama T, Kobayashi S, Kato T, Hirayama T, Ikuhara Y, Arai H, Ukyo Y, Uchimoto Y, Ogumi Z (2016) Structural understanding of superior battery propertiesof partially Ni-doped Li2MnO3 as cathode material. J Phys Chem Lett 7:2063–2067

    Article  CAS  Google Scholar 

  29. Tan X, Liu R, Xie C, Shen Q (2018) Modified structural characteristics and enhanced electrochemical properties of oxygen-deficient Li2MnO3-δobtained from pristine Li2MnO3. J Power Sources 374:134–131

    Article  CAS  Google Scholar 

  30. Chen H, Islam MS (2016) Lithiu mextraction mechanism in Li-rich Li2MnO3 involving oxygen hole formation and dimerization. Chem Mater 28:6656–6663

    Article  CAS  Google Scholar 

  31. Castro LT, Shojan J, Julien CM (2015) Synthesis, characterization and electrochemical performance of Al-substituted Li2MnO3. Mater Sci Eng B 201:13–22

    Article  Google Scholar 

  32. Lim J-M, Kim D, Lim Y-G, Park M-S, Kim Y-J, Cho M, Cho K (2016) Mechanism of oxygen vacancy on impeded phase transformation and electrochemical activation in inactive Li2MnO3. ChemElectroChem 3:943–949

    Article  CAS  Google Scholar 

  33. Croy JR, Kim D, Balasubramanian M, Gallagher K, Kang SH, Thackeray MM (2012) Countering the voltage decay in high capacity xLi2MnO3 •(1-x)LiMO2 electrodes (M=Mn, Ni, Co) for Li+-ion batteries. J Electrochem Soc 159:A781–A790

    Article  CAS  Google Scholar 

  34. Wang D, Li X, Wang Z, Guo H, Xu Y, Fan Y, Ru J (2016) Role of zirconium dopant on the structure and highvoltage electrochemical performances of LiNi0.5Co0.2Mn0.3O2 cathode materials for lithium ion batteries. Electrochim Acta 188:48–56

    Article  CAS  Google Scholar 

  35. Yan G, Li X, Wang Z, Guo H, Wang C (2014) Tris (trimethylsilyl)phosphate: a film-forming additive for high voltage cathode material in lithium-ion batteries. J Power Sources 248:1306–1311

    Article  CAS  Google Scholar 

  36. Wang R, Li X, Wang Z, Zhang H (2017) Electrochemical analysis graphite/electrolyte interface in lithium-ion batteries: ptoluenesulfonyl isocyanate aselectrolyte additive. NanoEnergy 34:131–140

    CAS  Google Scholar 

  37. Pan L, Xia Y, Qiu B, Zhao H, Guo H, Jia K, Gu Q, Liu Z (2016) Synthesis and electrochemical performance of micro-sized Li-rich layered cathode material for Lithium-ion batteries. Electrochim Acta 211:507–514

    Article  CAS  Google Scholar 

  38. Chen C, Chen S, Shui M, Xu X, Zheng W, Feng L, Shu J, Ren Y (2015) Comparative studies on potential dependent electrochemical impedance spectroscopy of cathode material 0.5Li2MnO3·0.5LiNi0.5Mn0.5O2 for the initial two charging cycles. Curr Appl Phys 15:149–155

    Article  Google Scholar 

  39. Yan J, Liu X, Li B (2014) Recent progress in Li-rich layered oxides as cathode materials for Li-ion batteries. RSC Adv 4:63268–63284

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by National Key Research and Development Program of China (No.2016YFB0300801), Major Research Equipment Development Projects of National Natural Science Foundation of China (No. 51327902).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanghua Chen.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Wang, F., Zhai, H. et al. Improving the electrochemical performance of Li2MnO3 cathode material by micro-substitution of nickel to manganese. Ionics 26, 683–690 (2020). https://doi.org/10.1007/s11581-019-03270-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-03270-4

Keywords

Navigation