Skip to main content

Advertisement

Log in

Fabrication and bifunctional electrocatalytic performance of FeNi3/MnFe2O4/nitrogen-doping reduced graphene oxide nanocomposite for oxygen electrocatalytic reactions

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The exploration of high-efficiency, low-cost, and long-durability bifunctional electrocatalysts for the oxygen reduction/evolution reactions (ORR/OER) through tuning the chemical components is a great challenge in the energy conversion and storage systems. Herein, we developed a facile and cost-effective strategy to fabricate a FeNi3/MnFe2O4/nitrogen-doped reduced graphene oxide (N-RGO) nanocomposite by calcining the NiFeMn-layered double hydroxides (LDHs)/polypyrrole (PPy)/RGO precursor at 550 °C in Ar atmosphere. The resulting FeNi3/MnFe2O4/N-RGO nanocomposite exhibits not only superior ORR activities (a half-wave potential (E1/2) of 0.76 V vs. RHE and a J1600 rpm of − 4.40 mA cm−2 at 0.5 V vs. RHE) but also excellent OER activities (an overpotential η10 mA cm-2 of 343 mV) in alkaline media. The overall oxygen electrode performance of FeNi3/MnFe2O4/N-RGO demonstrates the smallest ΔE (EOER, 10 mA cm-2-EORR, −3 mA cm-2) value of 0.85 V compared with the benchmark (commercial 20 wt% Pt/C and RuO2/C). Moreover, FeNi3/MnFe2O4/N-RGO also displays superior methanol tolerance in ORR and good durability in both ORR and OER, making it promising applications for oxygen electrocatalysis.

We have successfully fabricated a highly efficient and robust FeNi3/MnFe2O4/N-RGO bifunctional electrocatalyst derived from NiFeMn-LDH/PPy/RGO precursor for oxygen electrocatalytic reactions. Based on the synergistic effect among different components, the resulting FeNi3/MnFe2O4/N-RGO displays excellent ORR activities in 0.1 M KOH and good OER activities in 1.0 M KOH. Moreover, the FeNi3/MnFe2O4/N-RGO shows superior bifunctional electrocatalytic performance with the lowest ΔE value of 0.85 V, which is comparable with that of commercial Pt/C catalyst for ORR and that of commercial RuO2/C for OER.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wang L, Li L, Liu H, Wang S, Fang H, Gao H, Gao K, Zhang Y, Sun J, Yan J (2018) Polylaminate TaN/ta coating modified ferritic stainless steel bipolar plate for high temperature proton exchange membrane fuel cell. J Power Sources 399:343–349

    CAS  Google Scholar 

  2. Wang L, Gao H, Fang H, Wang S, Sun J (2016) Effect of methanol on the electrochemical behaviour and surface conductivity of niobium carbide-modified stainless steel for DMFC bipolar plate. Int J Hydrog Energy 41:14864–14871

    CAS  Google Scholar 

  3. Gao H, Liao S, Zhang Y, Wang L, Zhang L (2017) Methanol tolerant core-shell RuFeSe@Pt/C catalyst for oxygen reduction reaction. Int J Hydrog Energy 42:20658–20668

    CAS  Google Scholar 

  4. Gao H, He L, Zhang Y, Zhang S, Wang L (2017) Facile synthesis of Pt nanoparticles supported on graphene/Vulcan XC-72 carbon and their application for methanol oxidation. Ionics 23:435–442

    CAS  Google Scholar 

  5. Tian G, Zhao M, Yu D, Kong X, Huang J, Zhang Q, Wei F (2014) Nitrogen-doped graphene/carbon nanotube hybrids: in situ formation on bifunctional catalysts and their superior electrocatalytic activity for oxygen evolution/reduction reaction. Small 10:2251–2259

    CAS  PubMed  Google Scholar 

  6. Li R, Wei Z, Gou X (2015) Nitrogen and phosphorus dual-doped graphene/carbon nanosheets as bifunctional electrocatalysts for oxygen reduction and evolution. ACS Catal 5:4133–4142

    CAS  Google Scholar 

  7. Zhang J, Zhao Z, Xia X, Dai L (2015) A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat Nanotechnol 10:444–452

    CAS  PubMed  Google Scholar 

  8. Zhang C, Wang B, Shen X, Liu J, Kong X, Chuang SSC, Yang D, Dong A, Peng Z (2016) A nitrogen-doped ordered mesoporous carbon/graphene framework as bifunctional electrocatalyst for oxygen reduction and evolution reactions. Nano Energy 30:503–510

    CAS  Google Scholar 

  9. Wang L, Lin C, Huang D, Zhang F, Wang M, Jin J (2014) A comparative study of composition and morphology effect of NixCo1−x(OH)2 on oxygen evolution/reduction reaction. ACS Appl Mater Interfaces 6:10172–10180

    CAS  PubMed  Google Scholar 

  10. Liang Y, Li Y, Wang H, Zhou J, Wang J, Regier T, Dai H (2011) Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat Mater 10:780–786

    CAS  PubMed  Google Scholar 

  11. Liu Y, Higgins DC, Wu J, Fowler M, Chen Z (2013) Cubic spinel cobalt oxide/multi-walled carbon nanotube composites as an efficient bifunctional electrocatalyst for oxygen reaction. Electrochem Commun 34:125–129

    Google Scholar 

  12. He B, Chen X, Lu J, Yao S, Wei J, Zhao Q, Jing D, Huang X, Wang T (2016) One-pot synthesized co/Co3O4-N-graphene composite as electrocatalyst for oxygen reduction reaction and oxygen evolution reaction. Electroanalysis 28:2435–2443

    CAS  Google Scholar 

  13. Ganesan P, Prabu M, Sanetuntikul J, Shanmugam S (2015) Cobalt sulfide nanoparticles grown on nitrogen and sulfur codoped graphene oxide: an efficient electrocatalyst for oxygen reduction and evolution reactions. ACS Catal 5:3625–3637

    CAS  Google Scholar 

  14. Liu Q, Jin J, Zhou J, Zhang J (2013) NiCo2S4@graphene as a bifunctional electrocatalyst for oxygen reduction and evolution reactions. ACS Appl Mater Interfaces 5:5002–5008

    CAS  PubMed  Google Scholar 

  15. Shen M, Ruan C, Chen Y, Jiang C, Ai K, Lu L (2015) Covalent entrapment of cobalt-iron sulfides in N-doped mesoporous carbon: extraordinary bifunctional electrocatalysts for oxygen reduction and evolution reactions. ACS Appl Mater Interfaces 7:1207–1218

    CAS  PubMed  Google Scholar 

  16. Luo Y, Wang Z, Fu Y, Jin C, Wei Q, Yang R (2016) In situ preparation of hollow Mo2C-C hybrid microspheres as bifunctional electrocatalysts for oxygen reduction and evolution reactions. J Mater Chem A 4:12583–12590

    CAS  Google Scholar 

  17. Wang J, Fu Y, Xu Y, Wu J, Tian J-H, Yang R (2016) Hierarchical NiCo2O4 hollow nanospheres as high efficient bi-functional catalysts for oxygen reduction and evolution reactions. Int J Hydrog Energy 41:8847–8854

    CAS  Google Scholar 

  18. Zhao X, Fu Y, Wang J, Xu Y, Tian J-H, Yang R (2016) Ni-doped CoFe2O4 hollow nanospheres as efficient bi-functional catalysts. Electrochim Acta 201:172–178

    CAS  Google Scholar 

  19. Zhao A, Masa J, Xia W, Maljusch A, Willinger MG, Clavel G, Xie K, Schuhmann W, Muhler M (2014) Spinel Mn-Co oxide in N-doped carbon nanotubes as a bifunctional electrocatalyst synthesized by oxidative cutting. J Am Chem Soc 136:7551–7554

    CAS  PubMed  Google Scholar 

  20. Cao X, Yan W, Jin C, Tian J, Ke K, Yang R (2015) Surface modification of MnCo2O4 with conducting polypyrrole as a highly active bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Electrochim Acta 180:788–794

    CAS  Google Scholar 

  21. Wang D, Chen X, Evans DG, Yang W (2013) Well-dispersed Co3O4/Co2MnO4 composites as a synergistic bifunctional catalyst for oxygen reduction and oxygen evolution reactions. Nanoscale 5:5312–5315

    CAS  PubMed  Google Scholar 

  22. Fang H, Zou W, Yan J, Xing Y, Zhang S (2018) Facile fabrication of Fe2O3 nanoparticles anchored on carbon nanotubes as high-performance anode for lithium-ion batteries. ChemElectroChem 5:2458–2463

    CAS  Google Scholar 

  23. Fang H, Meng F, Chen G et al (2019) Sandwich-structured Fe3O4/graphene hybrid film for high-performance lithium-ion batteries. Int J Electrochem Sci 14:7937

    CAS  Google Scholar 

  24. Fang H, Meng F, Yan J, Wang L, Zhang Y (2019) Fe3O4 hard templating to assemble highly wrinkled graphene sheets into hierarchical porous film for compact capacitive energy storage. RSC Adv 9:20107–20112

    CAS  Google Scholar 

  25. Fang H, Chen G, Wang L, Yan J, Zhang L, Gao K, Zhang Y, Wang L (2018) Facile fabrication of hierarchical film composed of Co(OH)2@carbon nanotube core/sheath nanocables and its capacitive performance. RSC Adv 8:38550–38555

    CAS  Google Scholar 

  26. Fang H, Zhang L, Xing Y et al (2018) Nanostructured manganese oxide films for high performance supercapacitors. Int J Electrochem Sci 13:8736

    CAS  Google Scholar 

  27. Huo R, Jiang W, Xu S, Zhang F, Hu J (2014) Co/CoO/CoFe2O4/G composites derived from layered double hydroxides towards mass production of efficient Pt-free electrocatalysts for oxygen reduction reaction. Nanoscale 6:203–206

    CAS  PubMed  Google Scholar 

  28. Gong M, Dai H (2015) A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Res 8:23–39

    CAS  Google Scholar 

  29. Gong M, Li Y, Wang H, Liang Y, Wu JZ, Zhou J, Wang J, Regier T, Wei F, Dai H (2013) An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation. J Am Chem Soc 135:8452–8455

    CAS  PubMed  Google Scholar 

  30. Tang D, Liu J, Wu X, Liu R, Han X, Han Y, Huang H, Liu Y, Kang Z (2014) Carbon quantum dot/NiFe layered double-hydroxide composite as a highly efficient electrocatalyst for water oxidation. ACS Appl Mater Interfaces 6:7918–7925

    CAS  PubMed  Google Scholar 

  31. Chen R, Sun G, Yang C, Zhang L, Miao J, Tao H, Yang H, Chen J, Chen P, Liu B (2016) Achieving stable and efficient water oxidation by incorporating NiFe layered double hydroxide nanoparticles into aligned carbon nanotubes. Nanoscale Horiz 1:156–160

    CAS  Google Scholar 

  32. Wang Y, Wang Z, Wu X, Li M (2016) Synergistic effect between strongly coupled CoAl layered double hydroxides and graphene for the electrocatalytic reduction of oxygen. Electrochim Acta 192:196–204

    CAS  Google Scholar 

  33. Youn DH, Park YB, Kim JY, Magesh G, Jang YJ, Lee JS (2015) One-pot synthesis of NiFe layered double hydroxide/reduced graphene oxide composite as an efficient electrocatalyst for electrochemical and photoelectrochemical water oxidation. J Power Sources 294:437–443

    CAS  Google Scholar 

  34. Qian L, Lu Z, Xu T, Wu X, Tian Y, Li Y, Huo Z, Sun X, Duan X (2015) Trinary layered double hydroxides as high-performance bifunctional materials for oxygen electrocatalysis. Adv Energy Mater 5:1500245

    Google Scholar 

  35. Zhan T, Zhang Y, Liu X, Lu S, Hou W (2016) NiFe layered double hydroxide/reduced graphene oxide nanohybrid as an efficient bifunctional electrocatalyst for oxygen evolution and reduction reactions. J Power Sources 333:53–60

    CAS  Google Scholar 

  36. Tian D, Zhou X, Zhang Y, Zhou Z, Bu X (2015) MOF-derived porous Co3O4 hollow tetrahedra with excellent performance as anode materials for lithium-ion batteries. Inorg Chem 54:8159–8161

    CAS  PubMed  Google Scholar 

  37. Yang D, Kong L, Zhong M, Zhu J, X B (2019) Metal-organic gel-derived FexOy/nitrogen-doped carbon films for enhanced lithium storage. Small 15:1804058

    Google Scholar 

  38. Shuang W, Huang H, Kong L, Zhong M, Li A, Wang D, Xu Y, Bu X (2019) Nitrogen-doped carbon shell-confined Ni3S2 composite nanosheets derived from Ni-MOF for high performance sodium-ion battery anodes. Nano Energy 62:154–163

    CAS  Google Scholar 

  39. Zhong M, Yang D, Xie C, Zhang Z, Zhou Z, X B (2016) Yolk–shell MnO@ZnMn2O4/N–C nanorods derived from α-MnO2/ZIF-8 as anode materials for lithium ion batteries. Small 12:5564–5571

    CAS  PubMed  Google Scholar 

  40. Chen C, Yang Q-H, Yang Y, Lv W, Wen Y, Hou P-X, Wang M, Cheng H-M (2009) Self-assembled free-standing graphite oxide membrane. Adv Mater 21:3007–3011

    CAS  Google Scholar 

  41. Jia X, Liu T, Feng Y et al (2017) Fabrication and bifunctional electrocatalytic performance of ternary CoNiMn layered double hydroxides/polypyrrole/reduced graphene oxide composite for oxygen reduction and evolution reactions. Electrochim Acta 245:59–68

    CAS  Google Scholar 

  42. Zhao J, Chen J, Xu S, Shao M, Zhang Q, Wei F, Ma J, Wei M, Evans DG, Duan X (2014) Hierarchical NiMn layered double hydroxide/carbon nanotubes architecture with superb energy density for flexible supercapacitors. Adv Funct Mater 24:2938–2946

    CAS  Google Scholar 

  43. Liu Z, Yu X, Yu H, Feng L (2018) Nanostructured FeNi3 incorporated with carbon doped with multiple nonmetal elements for the oxygen evolution reaction. Chemsuschem. 11:2703–2709

    CAS  PubMed  Google Scholar 

  44. Jia X, Meng Y, Zhang J, Song Y (2019) Nitrogen-doped OMCs with high electrocatalytic activity for oxygen reduction reaction. Inorg Chem Commom 107:107482

    CAS  Google Scholar 

  45. Zhang Y, Yao Q, Gao H, Zhang L, Wang L, Zhang A, Song Y, Wang L (2015) Synthesis and electrochemical performance of MnO2/BC composite as active materials for supercapacitors. J Anal Appl Pyrolysis 111:233–237

    CAS  Google Scholar 

  46. Zhang Y, Yao Q, Gao H, Wang L, Jia X, Zhang A, Song Y, Xia T, Dong H (2014) Facile synthesis and electrochemical performance of manganese dioxide doped by activated carbon, carbon nanofiber and carbon nanotube. Powder Technol 262:150–155

    CAS  Google Scholar 

  47. Zhang Y, qian Yao Q, li Gao H, xia Wang L, zhen Wang L, qin Zhang A, hua Song Y, chi Xia T (2014) Synthesis and electrochemical properties of hollow-porous MnO2-graphene micro-nano spheres for supercapacitor applications. Powder Technol 267:268–272

    CAS  Google Scholar 

  48. Jiang X, Li H, Li S, Huang S, Zhu C, Hou L (2018) Metal-organic framework-derived Ni–co alloy@carbon microspheres as high-performance counter electrode catalysts for dye-sensitized solar cells. Chem Eng J 334:419–431

    CAS  Google Scholar 

  49. Zhang S, Guan B, Lou X (2019) Co-Fe alloy/N-doped carbon hollow spheres derived from dual metal-organic frameworks for enhanced electrocatalytic oxygen reduction. Small 15:1805324

    Google Scholar 

  50. Cheng F, Su Y, Liang J, Tao Z, Chen J (2010) MnO2-based nanostructures as catalysts for electrochemical oxygen reduction in alkaline media. Chem Mater 22:898–905

    CAS  Google Scholar 

  51. Fan G, Li F, Evans DG, Duan X (2014) Catalytic applications of layered double hydroxides: recent advances and perspectives. Chem Soc Rev 43:7040–7066

    CAS  PubMed  Google Scholar 

  52. Gao H, He L, Xiao Y, Zhang Y, Zhang S (2016) One-step synthesis of reduced graphene oxide-supported PtCo nanoalloys with enhanced electrocatalytic activity for methanol oxidation. Ionics 22(11):2175–2182

    CAS  Google Scholar 

Download references

Funding

This work is supported by the Doctoral Research start-up Fund of Zhengzhou University of Light Industry (2017BSJJ040), Project of National Science Foundation of China (No. 21671178), Joint Project of National Natural Science Foundation of China (U1704256).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaodong Jia or Liming Zhou.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 5358 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, X., Zhang, Y., Zhang, L. et al. Fabrication and bifunctional electrocatalytic performance of FeNi3/MnFe2O4/nitrogen-doping reduced graphene oxide nanocomposite for oxygen electrocatalytic reactions. Ionics 26, 991–1001 (2020). https://doi.org/10.1007/s11581-019-03251-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-03251-7

Keywords

Navigation