Skip to main content
Log in

Molecular dynamics simulation of ionic transport and thermodynamic properties in β-PbF2

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this work, a study through the use of molecular dynamics of the ionic conduction processes in lead fluoride in its beta phase, as well as the variation of the specific heat capacity with the temperature increase at constant pressure, is presented. In order to carry out the molecular dynamic simulations, the classic simulation package DL_POLY and the well-known interatomic interaction potentials of Walker et al. were used. This research shows how the calculated ionic conductivity is in agreement with different reported experimental measurements in the non-superionic region; however, this finding presents discrepancies for the superionic region. The molecular dynamics calculations for the specific heat cp in this material show high coincidence in the non-superionic region (300–600 K). Simulations by molecular dynamics show that fluorine ions behave as a liquid flowing through the structure of fixed ions of lead.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kennedy JH, Miles R, Hunter J (1973) Solid electrolyte properties and crystal forms of lead fluoride. J Electrochem Soc 129:1441–1446

    Article  Google Scholar 

  2. Pérez Benito R, Khaneft D, O'Connor C, Capozza L, Diefenbach J, Gläser B, Ma Y, Maas FE, Rodríguez Piñeiro D (2016) Design and performance of a lead fluoride detector as a luminosity monitor. Nucl Instrum Meth A 826:6–14. https://doi.org/10.1016/j.nima.2016.04.071

    Article  CAS  Google Scholar 

  3. Kurosawa S, Yokota Y, Yanagida T, Yoshikawa A (2013) Optical and scintillation property of Ce, Ho and Eu-doped PbF2. Radiat Meas 55:120–123. https://doi.org/10.1016/j.radmeas.2013.03.005

    Article  CAS  Google Scholar 

  4. Portella KF, Rattmann KR, De Souza GP, Garcia CM, Cantao MP, Muccillo R (2000) Characterization of α - β PbF2 phase transition by several techniques. J Mater Sci 35:3263–3268. https://doi.org/10.1023/A:100481922

    Article  CAS  Google Scholar 

  5. Walker AB, Dixon M, Gillan MJ (1982) Computer simulation of ionic disorder in high-temperature PbF2. J Phys C Solid State Phys 15:4061–4073. https://doi.org/10.1088/0022-3719/15/19/007

    Article  CAS  Google Scholar 

  6. Hayakawa S, Osaka A, Nishioka H, Matsumoto S, Miura Y (2000) Structure of lead oxyfluorosilicate glasses: X-ray photoelectron and nuclear magnetic resonance spectroscopy and molecular dynamics simulation. J Non-Cryst Solids 272:103–118. https://doi.org/10.1016/S0022-3093(00)00233-7

    Article  CAS  Google Scholar 

  7. Silva MAP, Monteil A, Messaddeq Y, Ribeiro SJL (2002) Molecular dynamics simulations on devitrification: the PbF2 case. J Chem Phys 117:5366–5372. https://doi.org/10.1063/1.1501119

    Article  CAS  Google Scholar 

  8. Zhang N, Yang B, Huo J, Qi W, Zhang X, Ruan X, Bao J, He G (2019) Hydration structures of vanadium/oxovanadium cations in the presence of sulfuric acid: a molecular dynamics simulation study. Chem Eng Sci 195:683–692. https://doi.org/10.1016/j.ces.2018.10.014

    Article  CAS  Google Scholar 

  9. Zhang N, Huo J, Yang B, Ruan X, Zhang X, Bao J, Qi W, He G (2018) Understanding of imidazolium group hydration and polymer structure for hydroxide anion conduction in hydrated imidazolium-g-PPO membrane by molecular dynamics simulations. Chem Eng Sci 192:1167–1176. https://doi.org/10.1016/j.ces.2018.08.051

    Article  CAS  Google Scholar 

  10. Cazorla C, Sagotra AK (2018) High-pressure phase diagram and superionicity of alkaline earth metal difluorides. J Phys Chem C 122:1267–1279. https://doi.org/10.1021/acs.jpcc.7b10975

    Article  CAS  Google Scholar 

  11. Nelson JR, Needs RJ, Pickard CJ (2017) High-pressure phases of group-II difluorides: polymorphism and superionicity. Phys Rev B 95:054118. https://doi.org/10.1103/PhysRevB.95.054118

    Article  Google Scholar 

  12. Monteil A, Chaussedent S, Guichaoua D (2014) Molecular dynamics simulation of phase transitions in crystalline lead (II) fluoride. Mater Chem Phys 146:170–174. https://doi.org/10.1016/j.matchemphys.2014.03.016

    Article  CAS  Google Scholar 

  13. Cherguia Y, Nehaoua N, Telghemti B, Guemid S, Deraddji NE, Belkhir H, Mekki DE (2010) The structural properties of PbF2 by molecular dynamics. Eur Phys J Appl Phys 51:20502p1–20502p7. https://doi.org/10.1051/epjap/2010096

    Article  CAS  Google Scholar 

  14. Dantelle G, Mortier M, Monteil A, Chaussedent S, Silva MAP (2007) Molecular dynamics simulation study of erbium induced devitrification in vitreous PbF2. J Chem Phys 127:094509. https://doi.org/10.1063/1.2771546

    Article  PubMed  CAS  Google Scholar 

  15. Catlow CRA, Norgett MJ (1973) Shell model calculations of the energies of formation of point defects in alkaline earth fluorides. J Phys C Solid State Phys 6:1325–1339

    Article  CAS  Google Scholar 

  16. Todorov IT, Smith W, Trachenko K, Dove MT (2006) DL_POLY_3: new dimensions in molecular dynamics simulations via massive parallelism. J Mater Chem 16:1911–1918. https://doi.org/10.1039/B517931A

    Article  CAS  Google Scholar 

  17. Young CW, Todorov IT (2018) DL_ANALYSER notation for atomic interactions (DANAI): a natural annotation system for molecular interactions, using ethanoic acid liquid as a test case. Molecules 23:p36. https://doi.org/10.3390/molecules23010036

    Article  CAS  Google Scholar 

  18. Lv X, Xu Z, Li J, Chen J, Liu Q (2016) Molecular dynamics investigation on structural and transport properties of Na3AlF6–Al2O3 molten salt. J Mol Liquids 221:26–32. https://doi.org/10.1016/j.molliq.2016.05.064

    Article  CAS  Google Scholar 

  19. Rajabpour A, Akizi FY, Heyhat MM, Gordiz K (2013) Molecular dynamics simulation of the specific heat capacity of water-Cu nanofluids. Int Nano Lett 3:58. https://doi.org/10.1186/2228-5326-3-58

  20. Habasaki J, Leon C, Ngai K (2017) Dynamics of glassy, crystalline and liquid ionic conductors. Springer Verlag, Berlin. https://doi.org/10.1007/978-3-319-42391-3

    Book  Google Scholar 

  21. Benz R (1975) Electrical conductivity of PbF2. Z Physik Chem (NF) 95:25–31

    Article  CAS  Google Scholar 

  22. Gordon RE, Strange JH (1978) NMR relaxation and self-diffusion in PbF2. J Phys C Solid State Phys 11:3213–3223. https://doi.org/10.1088/0022-3719/11/15/020

    Article  CAS  Google Scholar 

  23. Carr VM, Chadwick AV, Saghafian R (1978) The electrical conductivity of PbF2 and SrCl2 crystals at high temperatures. J Phys C Solid State Phys 11:L637–L641. https://doi.org/10.1088/0022-3719/11/15/006

    Article  CAS  Google Scholar 

  24. Volodkovich LM, Petrov GS, Vecher RA, Vecher AA (1985) Heat capacity and enthalpy of phase transitions of α- and β- modifications of lead fluoride. Thermochim Acta 88:497–500. https://doi.org/10.1016/0040-6031(85)85474-5

    Article  CAS  Google Scholar 

  25. Melchionna S, Ciccotti G, Holian BL (1993) Hoover NPT dynamics for system varying in shape and size. Mol Phys 78:533–544. https://doi.org/10.1080/00268979300100371

    Article  CAS  Google Scholar 

  26. He X, Zhu Y, Mo Y (2017) Origin of fast ion diffusion in super-ionic conductors. Nat Commun 8:15893. https://doi.org/10.1038/ncomms15893

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by COLCIENCIAS, Universidad del Valle and Universidad del Quindío.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. D. López.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López, J.D., Diosa, J.E. & Correa, H. Molecular dynamics simulation of ionic transport and thermodynamic properties in β-PbF2. Ionics 25, 5383–5390 (2019). https://doi.org/10.1007/s11581-019-03073-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-03073-7

Keywords

Navigation