Skip to main content
Log in

Kombucha scoby-based carbon as a green scaffold for high-capacity cathode in lithium–sulfur batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A ternary composite cathode of sulfur, poly(acrylonitrile) (PAN), and carbon was investigated for the possible use in Li–S batteries. The carbon used in this work was obtained from kombucha tea or tea fungus with potassium hydroxide activation process. The flaky structure of functionalized carbon derived from a waste part of kombucha culture has micropores and mesopores with a large pore volume, which are favorable for impregnating elemental sulfur. The ration of the ternary composite was based on a simple process involving a dispersion of the carbon with that of S/PAN, followed by a simple heat treatment. The cathode delivered an initial discharge capacity of 1666 mAh g−1 at C/10 rate and a 100th cycle capacity of 838 mAh g−1. This study exploits the cumulative contribution of a conductive carbon and PAN in the improved performance of the cathode.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Manthiram A, Fu Y, Su YS (2012) Challenges and prospects of lithium–sulfur batteries. Acc Chem Res 46:1125

    PubMed  Google Scholar 

  2. Yang Y, Zheng G, Cui Y (2013) Nanostructured sulfur cathodes. Chem Soc Rev 42:3018–3032

    CAS  PubMed  Google Scholar 

  3. Zhang Y, Bakenov Z, Zhao Y, Konarov A, Doan TNL, Sun KEK, Yermukhambetova A, Chen P (2013) Effect of nanosized Mg0.6Ni0.4O prepared by self-propagating high temperature synthesis on sulfur cathode performance in Li/S batteries. Powder Technol 235:248

    CAS  Google Scholar 

  4. Song MK, Cairns EJ, Zhang Y (2013) Lithium/sulfur batteries with high specific energy: old challenges and new opportunities. Nanoscale. 5:2186–2204

    CAS  PubMed  Google Scholar 

  5. Manthiram A (2011) Correction to “materials challenges and opportunities of lithium ion batteries”. J Phys Chem Lett 2:176–184

    CAS  Google Scholar 

  6. Wang JZ, Lu L, Choucair M, Stride JA, Xu X, Liu HK (2011) Sulfur-graphene composite for rechargeable lithium batteries. J Power Sources 196:7030–7034

    CAS  Google Scholar 

  7. Hart CJ, Cuisinier M, Liang X, Kundu D, Garsuch A, Nazar LF (2014) Rational design of sulphur host materials for Li-S batteries: correlating lithium polysulphide adsorptivity and self-discharge capacity loss. Chem Commun 51:2308–2311. https://doi.org/10.1039/C4CC08980D

    Article  CAS  Google Scholar 

  8. Xu GL, Xu YF, Fang JC, Peng XX, Fu F, Huang L, Li JT, Sun SG (2013) Porous graphitic carbon loading ultrahigh sulfur as high performance cathode of rechargeable lithium-sulfur batteries. ACS Appl Mater Interfaces 5:10782–10793

    CAS  PubMed  Google Scholar 

  9. Yang Y, Yu G, Cha JJ, Wu H, Vosgueritchian M, Yao Y, Bao Z, Cui Y (2011) Improving the performance of lithium–sulfur batteries by conductive polymer coating. ACS Nano 5:9187–9193

    CAS  PubMed  Google Scholar 

  10. Zhou W, Xiao X, Cai M, Yang L (2014) Polydopamine-coated, nitrogen-doped, hollow carbon–sulfur double-layered core–shell structure for improving lithium–sulfur batteries. Nano Lett 14:5250–5256

    CAS  PubMed  Google Scholar 

  11. Aurbach D, Pollak E, Elazri R, Salitra G, Kelley CS, Affinito J (2009) On the surface chemical aspects of very high energy density, rechargeable Li–sulfur batteries. J Electrochem Soc 156:A694

    CAS  Google Scholar 

  12. Wang JG, Xie K, Wei B (2015) Advanced engineering of nanostructured carbons for lithium–sulfur batteries. Nano Energy 15:413–444

    CAS  Google Scholar 

  13. Krishnaveni K, Subadevi R, Raja M, PremKumar T, Sivakumar M (2018) Sulfur/PAN/acetylene black composite prepared by a solution processing technique for lithium–sulfur batteries. J Appl Polym Sci 135:46598

    Google Scholar 

  14. Rajkumar P, Diwakar K, Radhika G, Krishnaveni K, Subadevi R, Sivakumar M (2019) Effect of silicon dioxide in sulfur/carbon black composite as a cathode material for lithium sulfur batteries. Vacuum 161:37–48

    CAS  Google Scholar 

  15. Radhika G, Subadevi R, Krishnaveni K, Liu WR, Sivakumar M (2018) Synthesis and electrochemical performance of PEG-MnO2–sulfur composites cathode materials for lithium, sulfur batteries. J Nanosci Nanotechnol 18(1):127–131

    CAS  PubMed  Google Scholar 

  16. Ji X, Lee K, Nazar LF (2009) A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat Mater 8:500–506

    CAS  PubMed  Google Scholar 

  17. Ji X, Evers S, Black R, Nazar LF (2011) Stabilizing lithium–sulphur cathodes using Nat polysulphide reservoirs. Commun 2:325

    Google Scholar 

  18. Li X, Cao Y, Qi W, Saraf LV, Xiao J, Nie Z, Mietek J, Zhang JG, Schwenzer B, Liu J (2011) Optimization of mesoporous carbon structures for lithium–sulfur battery applications. J Mater Chem 21:16603

    CAS  Google Scholar 

  19. Jayaprakash N, Shen J, Moganty SS, Corona A, Archer LA (2011) Porous hollow carbon@ sulfur composites for high-power lithium–sulfur batteries. Angew Chem Int Ed 50:5904

    CAS  Google Scholar 

  20. Zhang C, Wu HB, Yuan C, Guo Z, Lou XW (2012) Confining sulfur in double-shelled hollow carbon spheres for lithium–sulfur batteries. Angew Chem Int Ed 51:9592–9595

    CAS  Google Scholar 

  21. Brun N, Sakaushi K, Yu L, Giebeler L, Eckert J, Titirici MM (2013) Hydrothermal carbon-based nanostructured hollow spheres as electrode materials for high-power lithium–sulfur batteries. Phys Chem Chem Phys 15:6080–6087

    CAS  PubMed  Google Scholar 

  22. Dörfler S, Hagen M, Althues H, Tübke J, Kaskel S, Hoffmann MJ (2012) High capacity vertical aligned carbon nanotube/sulfur composite cathodes for lithium–sulfur batteries. Chem.Commun. 48:4097

    Google Scholar 

  23. Jin K, Zhou X, Zhang L, Xin X, Wan G, Liu Z (2013) Sulfur/carbon nanotube composite film as a flexible cathode for lithium–sulfur batteries. J Phys Chem C 117:21112–21119

    CAS  Google Scholar 

  24. Yuan Z, Peng HJ, Huang JQ, Liu XY, Wang DW, Cheng XB, Zhang Q (2014) Hierarchical free-standing carbon-nanotube paper electrodes with ultrahigh sulfur-loading for lithium–sulfur batteries. Adv Funct Mater 24:6105–6112

    CAS  Google Scholar 

  25. Zhang XQ, Sun Q, Dong W, Li D, Lu AH, Mu JQ, Li WC (2013) Synthesis of superior carbon nanofibers with large aspect ratio and tunable porosity for electrochemical energy storage. J MaterChem A 1:9449

    CAS  Google Scholar 

  26. Zeng L, Pan F, Li W, Jiang Y, Zhong X, Yu Y (2014) Free-standing porous carbon nanofibers–sulfur composite for flexible Li–S battery cathode. Nanoscale. 6:9579

    CAS  PubMed  Google Scholar 

  27. Zhou L, Lin X, Huang T, Yu A (2014) Nitrogen-doped porous carbon nanofiber webs/sulfur composites as cathode materials for lithium-sulfur batteries. Electrochim Acta 116:210–216

    CAS  Google Scholar 

  28. Chen S, Huang X, Liu H, Sun B, Yeoh W, Li K, Zhang J, Wang G (2014) 3D hyper branched hollow carbon nanorod architectures for high-performance lithium-sulfur batteries. Adv Energy Mater 4:1301761

    Google Scholar 

  29. Wang X, Zhang Z, Qu Y, Lai Y, Li J (2014) Nitrogen-doped graphene/sulfur composite as cathode material for high capacity lithium–sulfur batteries. J Power Sources 256:361–368

    CAS  Google Scholar 

  30. Qiu WL, Zhao W, Li G, Hou Y, Liu M, Zhou L (2014) High-rate, ultralong cycle-life lithium/sulfur batteries enabled by nitrogen-doped graphene. Nano Lett 14:4821–4827

    CAS  PubMed  Google Scholar 

  31. Wang C, Su K, Wan W, Guo H, Zhou H, Chen J, Zhang X, Huang Y (2014) High sulfur loading composite wrapped by 3D nitrogen-doped graphene as a cathode material for lithium–sulfur batteries. J Mater Chem A 2:5018–5023

    CAS  Google Scholar 

  32. Ji L, Rao M, Zheng H, Zhang L, Li Y, Duan W, Guo J, Cairns EJ, Zhang Y (2011) Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. J Am Chem Soc 133:18522–18525

    CAS  PubMed  Google Scholar 

  33. Evers S, Nazar LF (2012) Graphene-enveloped sulfur in a one pot reaction: a cathode with good coulombic efficiency and high practical sulfur content. Chem Commun 48:1233–1235

    CAS  Google Scholar 

  34. Wei Z, Chen J, Qin L, Nemage A, Zheng M, Dong Q (2012) Two-step hydrothermal method for synthesis of sulfur-graphene hybrid and its application in lithium sulfur batteries. J Electrochem Soc 159:A1236–A1239

    CAS  Google Scholar 

  35. Zhao X, Tu J, Lu Y, Cai J, Zhang Y, Wang X, Gu C (2013) Graphene-coated mesoporous carbon/sulfur cathode with enhanced cycling stability. Electrochim Acta 113:256–262

    CAS  Google Scholar 

  36. You Y, Zeng W, Yin YX, Zhang J, Yang CP, Zhu Y, Guo YG (2015) Hierarchically micro/mesoporous activated graphene with a large surface area for high sulfur loading in Li–S batteries. J Mater Chem A 3:4799–4802

    CAS  Google Scholar 

  37. Titirici MM, White RJ, Brun N, Budarin VL, Su DS, del Monte F, Clarkd JH, MacLachlang MJ (2015) Sustainable carbon materials. Chem Soc Rev 44:250–290

    CAS  PubMed  Google Scholar 

  38. Otowa T, Tanibata R, Itoh M (1993) Production and adsorption characteristics of MAXSORB: high-surface-area active carbon. Gas Sep Purif 7:241–245

    CAS  Google Scholar 

  39. Lozano-Castello D, Calo JM, Cazorla-Amoros D, Linares-Solano A (2007) Carbon activation with KOH as explored by temperature programmed techniques and the effects of hydrogen. Carbon. 45:2529–2536

    CAS  Google Scholar 

  40. Wang J, Kaskel S (2012) KOH activation of carbon-based materials for energy storage. J Mater Chem 22:23710

    CAS  Google Scholar 

  41. Nielsen M, Jurasek P, Hayashi J, Furimsky E (1995) Formation of toxic gases during pyrolysis of polyacrylonitrile and nylons. J Anal Appl Pyrolysis 35:43–51

    CAS  Google Scholar 

  42. Wiggins-Camacho JD, Stevenson KJ (2009) Effect of nitrogen concentration on capacitance, density of states, electronic conductivity, and morphology of N-doped carbon nanotube electrodes. J Phys Chem C 113:19082–19090

    CAS  Google Scholar 

  43. Wood KN, Hayre OR, Pylypenko S (2014) Recent progress on nitrogen/carbon structures designed for use in energy and sustainability applications. Energy Environ Sci 7:1212–1249

    CAS  Google Scholar 

  44. Zhao X, Liu Y, Manuel J, Chauhan GS, Ahn HJ, Kim KW, Cho KK, Ahn HJ (2015) Nitrogen-doped mesoporous carbon: a top-down strategy to promote sulfur immobilization for lithium–sulfur batteries. Chem Sus Chem 8:3234–3241

    CAS  Google Scholar 

  45. Sun F, Wang J, Chen H, Li W, Qiao W, Long D, Ling L (2013) High efficiency immobilization of sulfur on nitrogen-enriched mesoporous carbons for Li–S batteries. ACS Appl Mater Interfaces 5:5630–5638

    CAS  PubMed  Google Scholar 

  46. Chen F, Yang J, Bai T, Long B, Zhou X (2016) Biomass waste-derived honeycomb-like nitrogen and oxygen dual-doped porous carbon for high performance lithium-sulfur batteries. Electrochim Acta 192:99–109. https://doi.org/10.1016/j.electacta.2016.01.192

    Article  CAS  Google Scholar 

  47. Burlant WJ, Parsons JL (1956) Pyrolysis of polyacrylonitrile. J Polym Sci 22:249–256

    CAS  Google Scholar 

  48. Doan TNL, Ghaznavi M, Zhao Y, Zhang Y, Konarov A, Sadhu M, Tangirala R, Chen P (2013) Binding mechanism of sulfur and dehydrogenated polyacrylonitrile in sulfur/polymer composite cathode. J Power Sources 241:61–69

    CAS  Google Scholar 

  49. Du X, Zhao W, Wang Y, Wang CY, Chen MM, Qi T, Hua C, Ma M (2013) Preparation of activated carbon hollow fibers from ramie at low temperature for electric double-layer capacitor applications. Bioresour Technol 149:31–37

    CAS  PubMed  Google Scholar 

  50. Lee JT, Zhao Y, Thieme S, Kim H, Oschatz M, Borchardt L, Magasinski A, Cho WI, Kaskel S, Yushin G (2013) Sulfur-infiltrated micro-and mesoporous silicon carbide-derived carbon cathode for high-performance lithium sulfur batteries. Adv Mater 25:4573–4579

    CAS  PubMed  Google Scholar 

  51. Yushin G, Dash R, Jagiello J, Fischer JE, Gogotsi Y (2006) Carbide-derived carbons: effect of pore size on hydrogen uptake and heat of adsorption. Adv Funct Mater 16:2288–2293

    CAS  Google Scholar 

  52. Xiao L, Cao Y, Xiao J, Schwenzer B, Engelhard MH, Saraf LV, Nie Z, Exarhos GJ, Liu J (2012) A soft approach to encapsulate sulfur: polyaniline nanotubes for lithium-sulfur batteries with long cycle life. Adv Mater 24:1176

    CAS  PubMed  Google Scholar 

  53. Jayaprakash N, Shen J, Moganty SS, Corona A, Archer LA (2011) Porous hollow carbon@ sulfur composites for high-power lithium–sulfur batteries. Angew Chem Int Ed 123:6026–6030

    Google Scholar 

  54. Hwang TH, Jung DS, Kim JS, Kim BG, Choi JW (2013) One-dimensional carbon–sulfur composite fibers for Na–S rechargeable batteries operating at room temperature. Nano Lett 13:4532–4538

    CAS  PubMed  Google Scholar 

  55. Wang JL, Yang J, Xie JY, Xu NX (2002) A novel conductive polymer–sulfur composite cathode material for rechargeable lithium batteries. Adv Mater 14:963–965

    CAS  Google Scholar 

  56. Wang J, Wang J, Wan C, Du K, Xie J, Xu N (2003) Sulfur composite cathode materials for rechargeable lithium batteries. Adv Funct Mater 13:487–492

    CAS  Google Scholar 

  57. Konarov A, Gosselink D, Nam T, Doan L, Zhang Y, Zhao Y, Chen P (2014) Simple, scalable, and economical preparation of sulfur–PAN composite cathodes for Li/S batteries. J Power Sources 259:183–187

    CAS  Google Scholar 

  58. Lafi L, Cossement D, Chahine R (2005) Raman spectroscopy and nitrogen vapour adsorption for the study of structural changes during purification of single-wall carbon nanotubes. Carbon 43:1347–1357

    CAS  Google Scholar 

  59. Ma Y, Zhao J, Zhang L, Zhao Y, Fan Q, Li X, Hu Z, Huang W (2011) The production of carbon microtubes by the carbonization of catkins and their use in the oxygen reduction reaction. Carbon. 49:5292–5297

    CAS  Google Scholar 

  60. Boehm HP (1994) Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon. 32:759–769

    CAS  Google Scholar 

  61. Yu X, Xie J, Yang J, Huang H, Wang K, Wen Z (2004) Lithium storage in conductive sulfur-containing polymers. J Electroanal Chem 573:121

    CAS  Google Scholar 

  62. Fanous J, Wegner M, Grimminger J, Andresen A, Buchmeiser MR (2011) Structure-related electrochemistry of sulfur-poly (acrylonitrile) composite cathode materials for rechargeable lithium batteries. Chem.Mater. 23:5024–5028

    CAS  Google Scholar 

  63. Li G, Wang X, Seo MH, Li M, Ma L, Yuan Y, Wu T, Yu A, Wang S, Lu J, Chen Z (2018) Chemisorption of polysulfides through redox reactions with organic molecules for lithium–sulfur batteries. Nat Commun 9:705

    PubMed  PubMed Central  Google Scholar 

  64. Biljana MS, Biljana M, Gordana BG, Vladimir MP (2012) Micro-raman and micro-FTIR spectroscopic investigation of raw and dyed pan fibers. Croat Chem Acta 85:63

    Google Scholar 

  65. Ni L, Zhao G, Yang G, Niu G, Chen M, Diao G (2017) Dual core–shell structured S@C@MnO2 nanocomposite for highly stable lithium–sulfur batteries. ACS Appl Mater Interfaces. https://doi.org/10.1021/acsami.7b07996

    CAS  Google Scholar 

  66. Pan H, Cheng Z, Xiao Z, Li X, Wang R (2017) The fusion of imidazolium-based ionic polymer and carbon Nanotubes: One Type of New Heteroatom-Doped Carbon Precursors for High-Performance Lithium–Sulfur Batteries. Adv Funct Mater. https://doi.org/10.1002/adfm.201703936

    Google Scholar 

  67. Yuan S, Guo Z, Wang L, Hu S, Wang Y, Xia Y (2015) Leaf-like graphene-oxide-wrapped sulfur for high-performance lithium–sulfur battery. Adv.Sci. 2:1500071

    Google Scholar 

  68. Ren J, Zhou Y, Wu H, Xie F, Xu C, Lin D Sulfur-encapsulated in heteroatom-doped hierarchical porous carbon derived from goat hair for high performance lithium-sulfur batteries. J Energy Chem. https://doi.org/10.1016/j.jechem.2018.01.015]

    Google Scholar 

  69. Ji X, Nazar LF (2010) Advances in Li–S batteries. J Mater Chem 20:9821

    CAS  Google Scholar 

  70. Li N, Zheng M, Lu H, Hu Z, Shen C, Chang X, Ji G, Cao J, Shi Y (2012) High-rate lithium–sulfur batteries promoted by reduced graphene oxide coating. Chem Commun 48:4106

    CAS  Google Scholar 

  71. Zhang B, Qin X, Li GR, Gao XP (2010) Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres. Energy Environ Sci 3:1531

    CAS  Google Scholar 

  72. Bresser D, Passerini S, Scrosati B, (2013) Recent progress and remaining challenges in sulfur-based lithium secondary batteries–a review Chem Commun 49:10545

  73. Zhang YZ, Liu S, Li GC, Li GR, Gao XP (2014) Sulfur/polyacrylonitrile/carbon multi-composites as cathode materials for lithium/sulfur battery in the concentrated electrolyte. J Mater Chem A 2:4652–4659

    CAS  Google Scholar 

  74. Sun H, Xu GL, Xu YF, Sun SG, Zhang XF, Qiu YC, Yang SH (2012) A composite material of uniformly dispersed sulfur on reduced graphene oxide: aqueous one-pot synthesis, characterization and excellent performance as the cathode in rechargeable lithium-sulfur batteries. Nano Res 5:726–738

    CAS  Google Scholar 

  75. Wang YX, Huang L, Sun LC, Xie SY, Xu GL, Chen SR, Xu YF, Li JT, Chou SL, Dou SX, Sun SG (2012) Facile synthesis of a interleaved expanded graphite-embedded sulphur nanocomposite as cathode of Li–S batteries with excellent lithium storage performance. J Mater Chem 22:4744

    CAS  Google Scholar 

  76. Krishnaveni K, Subadevi R, Premkumar T, Raja M, Sivakumar M (2019) Synthesis and characterization of graphene oxide capped sulfur/polyacrylonitrile composite cathode by simple heat treatment. J Sulfur Chem:1–12. https://doi.org/10.1080/17415993.2019.1582655

    CAS  Google Scholar 

  77. Krishnaveni K, Subadevi R, Radhika G, Premkumar T, Raja M, Liu WR, Sivakumar M (2018) Carbon wrapping effect on sulfur/polyacrylonitrile composite cathode materials for lithium sulfur batteries. J Nanosci Nanotechnol 18:121–126

    CAS  PubMed  Google Scholar 

  78. Kumaresan K, Mikhaylik Y, White RE (2008) A mathematical model for a lithium–sulfur cell J. Electrochem Soc 155:A576

    CAS  Google Scholar 

  79. Choi JW, Cheruvally G, Kim DS, Ahn JH, Kim KW, Ahn HJ (2008) Rechargeable lithium/sulfur battery with liquid electrolytes containing toluene as additive. J Power Sources 183:441–445

    CAS  Google Scholar 

  80. Lee YM, Choi NS, Park JH, Park JK (2003) Electrochemical performance of lithium/sulfur batteries with protected Li anodes. J Power Sources 964:119–121

    Google Scholar 

  81. Zheng G, Yang Y, Cha JJ, Hong SS, Cui Y (2011) Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Lett 11:4462–4467

    CAS  PubMed  Google Scholar 

  82. Wang H, Yang Y, Liang Y, Robinson JT, Li Y, Jackson A, Cui Y, Dai H (2011) Graphene-wrapped sulfur particles as a rechargeable lithium–sulfur battery cathode material with high capacity and cycling stability. Nano Lett 11:2644–2647

    CAS  PubMed  Google Scholar 

  83. Guo JX, Zhang J, Jiang F, Zhao SH, Su QM, Du GH (2015) Microporous carbon nanosheets derived from corncobs for lithium–sulfur batteries. Electrochim Acta 176:853–860

    CAS  Google Scholar 

  84. Ji S, Imtiaz S, Sun D, Xin Y, Li Q, Huang T, Zhang Z, Huang Y (2017) Coralline-like n-doped hierarchically porous carbon derived from enteromorpha as host matrix for lithium-sulfur battery. Chem Eur J 23:18208–18215

    CAS  PubMed  Google Scholar 

  85. Moreno N, Caballero A, Hernán L, Morales J (2014) Lithium–sulfur batteries with activated carbons derived from olive stones. Carbon 70:241–248

    CAS  Google Scholar 

  86. Zhao S, Li C, Wang W, Zhang H, Gao M, Xiong X, Wang A, Yuan K, Huang Y, Wang FA (2013) Novel porous nanocomposite of sulfur/carbon obtained from fish scales for lithium-sulfur batteries. J Mater Chem A 1:3334

    CAS  Google Scholar 

  87. Zhang S, Zheng M, Lin Z, Li N, Liu Y, Zhao B, Pang H, Cao J, He P, Shi Y, (2014) Activated carbon with ultrahigh specific surface area synthesized from natural plant material for lithium-sulfur batteries. J Mater Chem A 2:15889

    CAS  Google Scholar 

  88. Sun Z, Zhang J, Yin L, Hu G, Fang R, Cheng HM, Li F (2017) Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries. Nat Commun 8:14627

Download references

Funding

This study was financially supported by BSR of University Grants Commission (UGC), New Delhi, India, and Ministry of Human Resource Development RUSA-Phase 2.0 grant sanctioned vide Lt.No.F-24-51/2014 U Policy (TNMulti Gen), Dept. of Education, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sivakumar Marimuthu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Figure S1

CV curve for S/PAN composite cathode. Fig. S2 Rate capability of S/PAN, S/KC and S/PAN/KC composite (DOC 133 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalaiappan, K., Marimuthu, S., Rengapillai, S. et al. Kombucha scoby-based carbon as a green scaffold for high-capacity cathode in lithium–sulfur batteries. Ionics 25, 4637–4650 (2019). https://doi.org/10.1007/s11581-019-03018-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-03018-0

Keywords

Navigation