Skip to main content

Advertisement

Log in

DNA-functionalized dye-loaded carbon dots: ultrabright FRET platform for ratiometric detection of Hg(II) in serum samples and cell microenvironment

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The dual-emission carbon dots (CDs) are used to fabricate an ultra-sensitive and highly selective fluorescence resonance energy transfer (FRET) aptameric-sensor for the quantitation of Hg(II). The designed strategy worked based on hybridization between T-rich ssDNA(S1) immobilized on CDs and AuNPs modified with complementary aptamer (AuNPs-S2) and Rhodamine B (RB) as an extra internal reference. Under optimized experimental conditions, the intensity ratio of I580/I668 shows a good linear relationship with the Hg(II) concentration in concentration range of 1.0 × 10−18 to 50.0 × 10−5 M with detection limit of 5 × 10−19 M. The proposed FRET aptasensor showed high selectivity for Hg(II) determination even in the presence of other metal ions with higher concentration as high as 1000 times. Furthermore, the RB-CDs probe was demonstrated to be efficient for MDA-MB 231 cell imaging. The bifunctional signaling probe exhibits impressive simplicity, convenience, and low detection time and the proposed sensor can be applied in biomedicine study, food safety, and environmental protection.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pytharopouloua S, Kournoutoua GG, Leotsinidisb M, Georgiouc CD, Kalpaxis DL (2013) Dysfunctions of the translational machinery in digestive glands of mussels exposed to mercury ions. Aquat Toxicol 134:23–33

    Article  CAS  Google Scholar 

  2. Zalups RK (2000) Molecular interactions with mercury in the kidney. Pharmacol Rev 52:113–143

    CAS  PubMed  Google Scholar 

  3. Monikha FA, Karami O, Hosseini M, Karami N, Bastami A, Ghasemi AF (2013) The effect of primary producers of experimental aquatic food chains on mercury and PCB153 biomagnification. Ecotox. Environ. Safe. 94:112–115

    Article  CAS  Google Scholar 

  4. Gómez-Ariza JL, Lorenzo F, García-Barrera T (2005) Comparative study of atomic fluorescence spectroscopy and inductively coupled plasma mass spectrometry for mercury and arsenic multispeciation. Anal Bioanal Chem 382:485–492

    Article  CAS  PubMed  Google Scholar 

  5. Fong BMW, Siu TS, Lee JSK, Tam S (2007) Determination of mercury in whole blood and urine by inductively coupled plasma mass spectrometry. J Anal Toxicol 31:281–287

    Article  CAS  PubMed  Google Scholar 

  6. Manna B, Raj CR (2018) Nanostructured sulfur-doped porous reduced graphene oxide for the ultrasensitive electrochemical detection and efficient removal of hg(II). ACS Sustain Chem Eng 6:6175–6182

    Article  CAS  Google Scholar 

  7. Amiri S, Navaee A, Salimi A, Ahmadi R (2017) Zeptomolar detection of Hg2+ based on label-free electrochemical aptasensor: one step closer to the dream of single atom detection. Electrochem Commun 78:21–25

    Article  CAS  Google Scholar 

  8. Zhou G, Chang J, Pu H, Shi K, Mao S, Sui X, Ren R, Cui S, Chen J (2016) Ultrasensitive mercury ion detection using DNA-functionalized molybdenum disulfide Nanosheet/gold nanoparticle hybrid field-effect transistor device. ACS Sens. 1:295–302

    Article  CAS  Google Scholar 

  9. Cui X, Zhu L, Wu J, Hou Y, Wang P, Wang Z, Yang M (2015) A fluorescent biosensor based on carbon dots-labeled Oligodeoxyribonucleotide and graphene oxide for mercury (II) detection. Biosens Bioelectron 63:506–512

    Article  CAS  PubMed  Google Scholar 

  10. Peng D, Zhang L, Liang RP, Qiu JD (2018) Rapid detection of mercury ions based on nitrogen-doped graphene quantum dots accelerating formation of manganese porphyrin. ACS Sens 3:1040–1047

    Article  CAS  PubMed  Google Scholar 

  11. Kong L, Wang J, Zheng G, Liu J (2011) A highly sensitive protocol (FRET/SIMNSEF) for the determination of mercury ions: a unity of fluorescence quenching of graphene and enhancement of nanogold. Chem Commun 47:10389–10391

    Article  CAS  Google Scholar 

  12. Amiri S, Ahmadi R, Salimi A, Navee A, Hamd-Qaddare S, Amini MA (2018; Advance Article) Ultrasensetive and highly selective FRET aptasensor for Hg2+ measuring in fish samples using carbon dots/AuNPs as donor/acceptor platform. New J Chem 42:16027–16035

    Article  CAS  Google Scholar 

  13. Gu W, Pei X, Cheng Y, Zhang C, Zhang J, Yan Y, Ding C, Xian Y (2017) Black phosphorus quantum dots as the Ratiometric fluorescence probe for trace mercury ion detection based on inner filter effect. ACS Sens. 2:576–582

    Article  CAS  PubMed  Google Scholar 

  14. Tang X, Wang YS, Xue JH, Zhou B, Cao JX, Chen SH, Li MH, Wang XF, Xue F, Zhu YF (2015) Huang Y Q. a novel strategy for dual-channel detection of metallothioneins and mercury based on the conformational switching of functional chimera aptamer. J Pharm Biomed Anal 107:258–264

    Article  CAS  PubMed  Google Scholar 

  15. Chen SH, Wang YS, Chen YS, Tang X, Cao JX, Li MH, Wang XF, Zhu YF, Huang YQ (2015) Dual-channel detection of metallothioneins and mercury based on a mercury-mediated aptamer beacon using thymidine–mercury–thymidine complex as a quencher. Spectrochim Acta A: Mol Spectrosc 151:315–321

    Article  CAS  Google Scholar 

  16. Huang YQ, Yin JC, Wang YS, Xiao XL, Zhou B, Xue JH, Tang X, Wang XF, Zhou B, Xue JH, Tang X, Chen SH (2016) Streptavidin and gold nanoparticles-based dual signal amplification for sensitive magnetoelastic sensing of mercury using a specific aptamer probe. Sensors Actuators B Chem 235:507–517

    Article  CAS  Google Scholar 

  17. Lu X, Zhang J, Xie YN, Zhang X, Jiang X, Hou X, Wu P (2018) Ratiometric phosphorescent probe for thallium in serum, water, and soil samples based on long-lived, spectrally resolved, Mn-doped ZnSe quantum dots and carbon dots. Anal Chem 90:2939–2945

    Article  CAS  PubMed  Google Scholar 

  18. Ying ZM, Wu Z, Tu B, Tan W, Jiang JH (2017) Genetically encoded fluorescent RNA sensor for Ratiometric imaging of MicroRNA in living tumor cells. JACS. 139:9779–9782

    Article  CAS  Google Scholar 

  19. Zhang Y, Li S, Zhao Z (2016) Using Nanoliposomes to construct a FRET-based Ratiometric fluorescent probe for sensing intracellular pH values. Anal Chem 88:12380–12385

    Article  CAS  PubMed  Google Scholar 

  20. Luxami V, Verma M, Rani R, Paula K, Kumar S (2012) FRET-based ratiometric detection of Hg2+ and biothiols using naphthalimide–rhodamine dyads. Org Biomol Chem 10:8076

    Article  CAS  PubMed  Google Scholar 

  21. Song W, Duan W, Liu Y, Ye Z, Chen Y, Chen H, Qi S, Wu J, Liu D, Xiao L, Ren C, Chen X (2017) Ratiometric detection of intracellular lysine and pH with one-pot synthesized dual emissive carbon dots. Anal Chem 89:13626–13633

    Article  CAS  PubMed  Google Scholar 

  22. Wang Y, Shan D, Wu G, Wang H, Ru F, Zhang X, Li L, Qian Y, Lu X (2018) A novel "dual-potential" Ratiometric Electrochemiluminescence DNA sensor based on enhancing and quenching effect by G-quadruplex / hemin and au-Luminol bifunctional nanoparticles. Biosens Bioelectron 106:64–70

    Article  CAS  PubMed  Google Scholar 

  23. Ji R, Liu A, Shen S, Cao X, Li X, Ge Y (2017) An indolizine–rhodamine based FRET fluorescence sensor for highly sensitive and selective detection of Hg2+ in living cells. RSC Adv 7:40829–40833

    Article  CAS  Google Scholar 

  24. Teradal NL, Jelinek R (2017) Carbon Nanomaterials in Biological Studies and Biomedicine. Adv Healthc Mater 17:1700574

    Article  CAS  Google Scholar 

  25. Yang L, Deng W, Cheng C, Tan Y, Xie Q, Yao S (2018) Fluorescent immunoassay for the detection of pathogenic Bacteria at the single-cell level using carbon dots encapsulated breakable Organosilica Nanocapsule as labels. ACS Appl Mater Interfaces 10:3441–3448

    Article  CAS  PubMed  Google Scholar 

  26. Hamd-Ghadareh S, Salimi A, Parsa S, Fathi F (2018) Simultaneous biosensing of CA125 and CA15-3 tumor markers and imaging of OVCAR-3 andMCF-7 cells lines via bi-color FRET phenomenon using dual blue-green luminescent carbon dots with single excitation wavelength. Int J Biol Macromol 118:617–628

    Article  CAS  PubMed  Google Scholar 

  27. Hamd-Ghadareh S, Salimi A, Fathi F, Bahrami S (2017) An amplified comparative fluorescence resonance energy transfer immunosensing of CA125 tumor marker and ovarian cancer cells using green and economic carbon dots for bio-applications in labeling, imagingand sensing. Biosens Bioelectron 96:308–316

    Article  CAS  PubMed  Google Scholar 

  28. Hamd-Qaddare S, Salimi A (2017) Amplified fluorescent sensing of DNA using luminescent carbon dots and AuNPs/GO as a sensing platform: a novel coupling of FRET and DNA hybridization for homogeneous HIV-1 gene detection at femtomolar level. Biosens Bioelectron 89:773–780

    Article  CAS  Google Scholar 

  29. Khramtsov P, Kropaneva M, Kalashnikova T, Bochkova M, Timganova V, Zamorina S, Rayev M (2018) Highly stable conjugates of carbon nanoparticles with DNA aptamers. Langmuir. 34:10321–10332

    Article  CAS  PubMed  Google Scholar 

  30. Gao W, Song H, Wang X, Liu X, Pang X, Zhou Y, Gao B, Peng X (2018) Carbon dots with red emission for sensing of Pt2+, Au3+ and Pd2+ and their bio-applications in vitro and in vivo. ACS Appl Mater Interfaces 10:1147–1154

    Article  CAS  PubMed  Google Scholar 

  31. Wang H, Sun X, Zhang T, Chen X, Zhu J, Xu W, Bai X, Dong B, Cui H, Song H (2018) Photoluminescence enhancement of carbon dots induced by hybrids of photonic crystals and gold–silver alloy nanoparticles. J Mater Chem C 6:147–152

    Article  CAS  Google Scholar 

  32. Xiong Y, Schneider J, Reckmeier CJ, Huang HP, Kasákb A, Rogach L (2017) Carbonization conditions influence the emission characteristics and the stability against Photobleaching of nitrogen doped carbon dots. Nanoscale. 9:11730–11738

    Article  CAS  PubMed  Google Scholar 

  33. Hu S, Meng X, Tian F, Yang W, Li N, Xue C, Yang J, Chang Q (2017) Dual photoluminescence centers from inorganic-salt-functionalized carbon dots for ratiometric pH sensing. J Mater Chem C 5:9849–9853

    Article  CAS  Google Scholar 

  34. Zhi B, Gallagher MJM, Frank BP, Lyons TY, Qiu TA, Da J, Mensch AC, Hamers RJ, Rosenzweig Z, Fairbrother DH, Haynes CL (2018) Investigation of phosphorous doping effects on polymeric carbon dots: fluorescence, Photostability, and environmental impact. Carbon. 129:438–449

    Article  CAS  Google Scholar 

  35. Martindale BC, Hutton GAM, Caputo CA, Prant S, Godin R, Durrant JR, Reisner E (2017) Enhancing light absorption and charge transfer efficiency in carbon dots through graphitization and Core nitrogen doping. Angew Chem 56:6459–6463

    Article  CAS  Google Scholar 

  36. Zhou Y, Sharma S, Peng Z, Leblanc R (2017) Polymers in carbon dots: a review. Polymers. 9:67

    Article  CAS  PubMed Central  Google Scholar 

  37. Chen BB, Liu ML, Zhan L, Li C, Huang MC (2018) Terbium (III) modified fluorescent carbon dots for highly selective and sensitive Ratiometry of stringent. Anal Chem 90:4003–4009

    Article  CAS  PubMed  Google Scholar 

  38. Mohan R, Drbohlavova J, Hubalek J (2018) Dual band emission in carbon dots. Chem Phys Lett 692:196–201

    Article  CAS  Google Scholar 

  39. Grabar KC, Freeman RG, Hommer MB, Natan MJ (1995) Preparation and characterization of au colloid monolayers. Anal Chem 67:735–743

    Article  CAS  Google Scholar 

  40. Song Y, Jiang T, Nguyen VL, Sparrman T, Björn E, Skyllberg U (2018) Thermodynamics of hg(II) bonding to thiol groups in Suwannee River natural organic matter resolved by competitive ligand exchange, hg LIII-edge EXAFS and 1H NMR spectroscopy. Environ Sci Technol 52:8292–8301

    Article  CAS  PubMed  Google Scholar 

  41. Liu L, Lu Y (2006) Preparation of aptamer-linked gold nanoparticle purple aggregates for colorimetric sensing of analytes. Nat Protoc 1:246–252

    Article  CAS  PubMed  Google Scholar 

  42. Zheng W, Shan N, Yu L, Wang X (2008) UV–visible, fluorescence and EPR properties of porphyrins and metalloporphyrins. Dyes Pigments 77:153–157

    Article  CAS  Google Scholar 

  43. Teymourian H, Salimi A, Khezrian S (2017) Development of a new label-free, indicator-free strategy toward ultrasensitive electrochemical DNA biosensing based on Fe3O4 nanoparticles/reduced graphene oxide composite. Electroanalysis 19:409–414

    Article  CAS  Google Scholar 

  44. Noorbakhsh A, Salimi A (2011) Development of DNA electrochemical biosensor based on immobilization of ssDNA on the surface of nickel oxide nanoparticles modified glassy carbon Electrode. Biosens Bioelectron 30:188–196

    Article  CAS  PubMed  Google Scholar 

  45. Niu X, Ding Y, Chen C, Zhao H, Lan M (2011) A novel electrochemical biosensor for Hg2+ determination based on Hg2+-induced DNA hybridization. Sensors Actuators B Chem 58:383–387

    Article  CAS  Google Scholar 

  46. Orriach-Fernández FJ, Medina-Castillo AL, Díaz-Gómez JE, Muňnoz de la Peňa A, Fernández-Sánchez JF, Fernández-Gutiérrez A (2014) A sensing microfibre mat produced by electrospinning for the turn-on luminescence determination of Hg2+ in water samples. Sensors Actuators B Chem 195:8–14

    Article  CAS  Google Scholar 

  47. Zhou Y, Dong H, Li L, Li M, Xiao K, Xu M (2014) Sens. Selective and sensitive colorimetric sensor of mercury (II) based on gold nanoparticles and 4-mercaptophenylboronic acid. Sensors Actuators B Chem 196:106–111

    Article  CAS  Google Scholar 

  48. Ren W, Zhang Y, Chen HG, Gao ZF, Li NB, Luo HQ (2016) Ultrasensitive label-free resonance Rayleigh scattering Aptasensor for Hg2+ using Hg2+-triggered exonuclease III-assisted target recycling and growth of G-wires for signal amplification. Anal Chem 88:1385–1390

    Article  CAS  PubMed  Google Scholar 

  49. Li T, Liang G, Li X (2013) Chemiluminescence assay for the sensitive detection of iodide based on extracting Hg2+ from a T–Hg2+–T complex. Analyst 138:1898–1902

    Article  CAS  PubMed  Google Scholar 

  50. Zhuo B, Li Y, Zhang A, Lu F, Chen Y, Gao W (2014) An electrochemiluminescence biosensor for sensitive and selective detection of Hg2+ based on π–π interaction between nucleotides and ferrocene–graphene nanosheets. J Mater Chem B 2:3263–3270

    Article  CAS  Google Scholar 

  51. Gao W, Zhang A, Chen Y, Chen Z, Chen Y, Lu F, Chen Z (2013) A novel probe density controllable electrochemiluminescence biosensor for ultra-sensitive detection of Hg2+ based on DNA hybridization optimization with gold nanoparticles array patterned self-assembly platform. Biosens Bioelectron 49:139–145

    Article  CAS  PubMed  Google Scholar 

  52. Babamiri B, Salimi A, Hallaj R (2018) Switchable electrochemiluminescence aptasensor coupled with resonance energy transfer for selective attomolar detection of Hg2+ via CdTe@CdS/dendrimer probe and au nanoparticle quencher. Biosens Bioelectron 102:328–335

    Article  CAS  PubMed  Google Scholar 

  53. Amao Y, Komori T (2004) Bio-photovoltaic conversion device using chlorine-e6 derived from chlorophyll from Spirulina adsorbed on a nanocrystalline TiO2 film electrode. Biosens Bioelectron 19:843–847

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported with the Research Office of University of Kurdistan and Iranian Nanotechnology Initiative. We thank Dr. Fardin Fathi and Farzad Soleimani (Kurdistan Medical University for taking cellar fluorescence imaging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdollah Salimi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 490 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamd-Ghadareh, S., Salimi, A. DNA-functionalized dye-loaded carbon dots: ultrabright FRET platform for ratiometric detection of Hg(II) in serum samples and cell microenvironment. Ionics 25, 4469–4479 (2019). https://doi.org/10.1007/s11581-019-02999-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-02999-2

Keywords

Navigation