Skip to main content

Advertisement

Log in

Synthesis and characterization of microporous hybrid nanocomposite membrane as potential hydrogen storage medium towards fuel cell applications

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Hydrogen is believed to be the clean energy source for the future, since water is the only by-product of hydrogen fuel cell. However, the great obstacle for the blooming of hydrogen economy is the development of safe, efficient, and economical onboard hydrogen storage medium. This paper describes the hydrogen storage performance of microporous polyetherimide/acid-treated halloysite nanotube/activated hexagonal boron nitride (PEI/A-HNT/Ah-BN) hybrid nanocomposite membranes. The microporous PEI/A-HNT/Ah-BN hybrid nanocomposite membranes were synthesized by a facile phase inversion technique. The synthesized hybrid nanocomposite membranes were characterized extensively by techniques like X-ray diffraction (XRD), micro-Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and CHNS elemental analysis. The microporous throughout the membrane matrix and the superior dispersion of A-HNT, Ah-BN nanomaterials on the surface of PEI were confirmed by SEM. The hydrogen storage properties were investigated by Sieverts-like hydrogenation setup. The outcomes indicated that the PEI/A-HNT/Ah-BN hybrid nanocomposite membrane exhibits best hydrogen storage capacity as 4.2 wt% compared with PEI/A-HNT (3.6 wt%), PEI/Ah-BN (2.4 wt%), and pristine PEI (0.8 wt%) membranes. Furthermore, the binding energy of stored hydrogen for PEI/A-HNT/Ah-BN hybrid nanocomposite is found to be 0.32 eV. In addition, the reusability of PEI/A-HNT/Ah-BN hybrid nanocomposite was studied and also exhibited good long-term stability (91.43%) even after 5th cycles. These results indicate that the proposed microporous PEI/A-HNT/Ah-BN hybrid nanocomposite membrane strategy provides a direction for new materials that meet the U.S. Department of Energy (DOE) hydrogen storage targets 2020 for fuel call applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Yilmaz F, Balta MT, Selbaş R (2016) A review of solar based hydrogen production methods. Renew Sust Energ Rev 56:171–178

    Article  CAS  Google Scholar 

  2. Wei TY, Lim KL, Tseng YS, Chan SLI (2017) A review on the characterization of hydrogen in hydrogen storage materials. Renew Sust Energ Rev 79:1122–1133

    Article  CAS  Google Scholar 

  3. Rusman NAA, Dahari M (2016) A review on the current progress of metal hydrides material for solid-state hydrogen storage applications. Int J Hydrog Energy 41:12108–12126

    Article  CAS  Google Scholar 

  4. Sherif S, Barbir F, Veziroglu T (2005) Towards a hydrogen economy. Electr J 18:62–76

    Article  Google Scholar 

  5. Cipriani G, Dio VD, Genduso F, Cascia DL, Liga R, Miceli R, Galluzzo GR (2014) Perspective on hydrogen energy carrier and its automotive applications. Int J Hydrog Energy 39:8482–8494

    Article  CAS  Google Scholar 

  6. Xie G, Zhang K, Guo BD, Liu Q, Fang L, Gong JR (2013) Graphene-based materials for hydrogen generation from light-driven water splitting. Adv Mater 25:3820–3839

    Article  CAS  PubMed  Google Scholar 

  7. Dutta S (2014) A review on production, storage of hydrogen and its utilization as an energy resource. Ind Eng Chem Res 20:1148–1156

    Article  CAS  Google Scholar 

  8. Balat M (2008) Potential importance of hydrogen as a future solution to environmental and transportation problems. Int J Hydrog Energy 33:4013–4029

    Article  CAS  Google Scholar 

  9. Hwang HT, Varma A (2014) Hydrogen storage for fuel cell vehicles. Curr Opin Chem Eng 5:42–48

    Article  Google Scholar 

  10. Durbin DJ, Malardier-Jugroot C (2013) Review of hydrogen storage techniques for on board vehicle applications. Int J Hydrog Energy 38:14595–14617

    Article  CAS  Google Scholar 

  11. Niaz S, Manzoor T, Pandith AH (2015) Hydrogen storage: materials, methods and perspectives. Renew Sust Energ Rev 50:457–469

    Article  CAS  Google Scholar 

  12. McKeown NB, Gahnem B, Msayib KJ, Budd PM, Tattershall CE, Mahmood K, Tan S, Book D, Langmi HW, Walton A (2006) Towards polymer-based hydrogen storage materials: engineering ultramicroporous cavities within polymers of intrinsic microporosity. Angew Chem Int Ed 45:1804–1807

    Article  CAS  Google Scholar 

  13. Wood CD, Tan B, Trewin A, Niu H, Bradshaw D, Rosseinsky MJ, Khimyak YZ, Campbell NL, Kirk R, Stockel E, Cooper AI (2007) Hydrogen storage in microporous hypercrosslinked organic polymer networks. Chem Mater 19:2034–2048

    Article  CAS  Google Scholar 

  14. Ramimoghadam D, Gray EM, Webb CJ (2016) Review of polymers of intrinsic microporosity for hydrogen storage applications. Int J Hydrog Energy 41:16944–16965

    Article  CAS  Google Scholar 

  15. Budd PM, Butler A, Selbie J, Mahmood K, McKeown NB, Ghanem B, Msayib K, Book D, Waltonc A (2007) The potential of organic polymer-based hydrogen storage materials. Phys Chem Chem Phys 9:1802–1808

    Article  CAS  PubMed  Google Scholar 

  16. McKeown NB, Budd PM, Book D (2007) Microporous polymers as potential hydrogen storage materials. Rapid Commun 28:995–1002

    Article  CAS  Google Scholar 

  17. Jurczyka MU, Kumar A, Srinivasan S, Stefanakos E (2007) Polyaniline-based nanocomposite materials for hydrogen storage. Int J Hydrog Energy 32:1010–1015

    Article  CAS  Google Scholar 

  18. Zhang C, Zhu P-C, Tan L, Luo L-N, Liu Y, Liu J-M, Ding S-Y, Tan B, Yang X-L, Xu H-B (2016) Synthesis and properties of organic microporous polymers from the monomer of hexaphenylbenzene based triptycene. Polymer 82:100–104

    Article  CAS  Google Scholar 

  19. Weber J, Antonietti M, Thomas A (2008) Microporous networks of high-performance polymers: elastic deformations and gas sorption properties. Macromolecules 41:2880–2885

    Article  CAS  Google Scholar 

  20. Pedicini R, Sacca A, Carbone A, Passalacqua E (2011) Hydrogen storage based on polymeric material. Int J Hydrog Energy 36:9062–9068

    Article  CAS  Google Scholar 

  21. Lee J-Y, Wood CD, Bradshaw D, Rosseinsky MJ, Cooper AI (2006) Hydrogen adsorption in microporous hypercrosslinked polymers. Chem Commun 25:2670–2672

  22. Germain J, Hradil J, Frechet JMJ, Svec F (2006) High surface area nanoporous polymers for reversible hydrogen storage. Chem Mater 18:4430–4435

    Article  CAS  Google Scholar 

  23. Silambarasan D, Vasu V, Iyakutti K (2014) Water soluble polymer-SWCNT-based composite for hydrogen storage. IEEE Trans Nanotechnol 13:261–267

    Article  CAS  Google Scholar 

  24. Kim BH, Hong WG, Lee SM, Yun YJ, Yu HY, Oh S-Y, Kim CH, Kim YY, Kim HJ (2010) Enhancement of hydrogen storage capacity in polyaniline-vanadium pentoxide nanocomposites. Int J Hydrog Energy 35:1300–1304

    Article  CAS  Google Scholar 

  25. Muthu RN, Rajashabala S, Kannan R (2015) Synthesis and characterization of polymer (sulfonated poly-ether-ether -ketone) based nanocomposite (h-boron nitride) membrane for hydrogen storage. Int J Hydrog Energy 40:1836–1845

    Article  CAS  Google Scholar 

  26. Chen Y, Zhu H, Liu Y (2011) Preparation of activated rectangular polyaniline-based carbon tubes and their application in hydrogen adsorption. Int J Hydrog Energy 36:11738–11745

    Article  CAS  Google Scholar 

  27. Li A, Lu R-F, Wang Y, Wang X, Han K-L, Deng W-Q (2010) Lithium-doped conjugated microporous polymers for reversible hydrogen storage. Angew Chem Int Ed 49:3330–3333

    Article  CAS  Google Scholar 

  28. Makridis SS, Gkanas EI, Panagakos G, Kikkinides ES, Stubos AK, Wagener P, Barcikowski S (2013) Polymer-stable magnesium nanocomposites prepared by laser ablation for efficient hydrogen storage. Int J Hydrog Energy 38:11530–11535

    Article  CAS  Google Scholar 

  29. Cho SJ, Choo K, Kim DP, Kim JW (2007) H2 sorption in HCl-treated polyaniline and polypyrrole. Catal Today 120:336–340

    Article  CAS  Google Scholar 

  30. Lvov Y, Wang W, Zhang L, Fakhrullin R (2016) Halloysite clay nanotubes for loading and sustained release of functional compounds. Adv Mater 28:1227–1250

    Article  CAS  PubMed  Google Scholar 

  31. Zhang Y, Tang A, Yang H, Ouyang J (2016) Applications and interfaces of halloysite nanocomposites. Appl Clay Sci 119:8–17

    Article  CAS  Google Scholar 

  32. Yuan P, Tan D, Annabi-Bergaya F (2015) Properties and applications of halloysite nanotubes: recent research advances and future prospects. Appl Clay Sci 112–113:75–93

    Article  CAS  Google Scholar 

  33. Massaro M, Amorati R, Cavallaro G, Guernelli S, Lazzara G, Milioto S, Noto R, Poma P, Riela S (2016) Direct chemical grafted curcumin on halloysite nanotubes as dual-responsive prodrug for pharmacological applications. Colloids Surf B 140:505–513

    Article  CAS  Google Scholar 

  34. Jin J, Ouyang J, Yang H (2017) Pd nanoparticles and MOFs synergistically hybridized Halloysite nanotubes for hydrogen storage. Nanoscale Res Lett 12:240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Attia NF, Menemparabath MM, Arepalli S, Geckeler KE (2013) Inorganic nanotube composites based on polyaniline: potential room-temperature hydrogen storage materials. Int J Hydrog Energy 38:9251–9262

    Article  CAS  Google Scholar 

  36. Jin J, Zhang Y, Ouyang J, Yang H (2014) Halloysite nanotubes as hydrogen storage materials. Phys Chem Miner 41:323–331

    Article  CAS  Google Scholar 

  37. Muthu RN, Rajashabala S, Kannan R (2016) Facile synthesis and characterization of a reduced graphene oxide/halloysite nanotubes/hexagonal boron nitride (RGO/HNT/h-BN) hybrid nanocomposite and its potential application in hydrogen storage. RSC Adv 6:79072–79084

    Article  CAS  Google Scholar 

  38. Muthu RN, Rajashabala S, Kannan R (2016) Synthesis, characterization of hexagonal boron nitride nanoparticles decorated halloysite nanoclay composite and its application as hydrogen storage medium. Renew Energy 90:554–564

    Article  CAS  Google Scholar 

  39. Muthu RN, Rajashabala S, Kannan R (2018) Synthesis of polyetherimide/halloysite nanotubes (PEI/HNTs) based nanocomposite membrane towards hydrogen storage. AIP Conf Proc 1942:050107

    Article  CAS  Google Scholar 

  40. Weng Q, Wang X, Wang X, Bandoa Y, Golberg D (2016) Functionalized hexagonal boron nitride nanomaterials: emerging properties and applications. Chem Soc Rev 45:3989–4012

    Article  CAS  PubMed  Google Scholar 

  41. Wang J, Ma F, Sun M (2017) Graphene, hexagonal boron nitride, and their heterostructures: properties and applications. RSC Adv 7:16801–16822

    Article  CAS  Google Scholar 

  42. Golberg D, Bando Y, Huang Y, Terao T, Mitome M, Tang C, Zhi C (2010) Boron nitride nanotubes and nanosheets. ACS Nano 4:2979–2993

    Article  CAS  PubMed  Google Scholar 

  43. Duan X, Yang Z, Chen L, Tian Z, Cai D, Wang Y, Jia D, Zhou Y (2016) Review on the properties of hexagonal boron nitride matrix composite ceramics. J Eur Ceram Soc 36:3725–3737

    Article  CAS  Google Scholar 

  44. Weng Q, Wang X, Zhi C, Bando Y, Golberg D (2013) Boron nitride porous microbelts for hydrogen storage. ACS Nano 7:1558–1565

    Article  CAS  PubMed  Google Scholar 

  45. Weng Q, Wang X, Bando Y, Golberg D (2014) One-step template-free synthesis of highly porous boron nitride microsponges for hydrogen storage. Adv Energy Mater 4:1301525

    Article  CAS  Google Scholar 

  46. Muthu RN, Rajashabala S, Kannan R (2017) Hydrogen storage performance of lithium borohydride decorated activated hexagonal boron nitride nanocomposite for fuel cell applications. Int J Hydrog Energy 42:15586–15596

    Article  CAS  Google Scholar 

  47. Ma R, Bando Y, Zhu H, Sato T, Xu C, Wu D (2002) Hydrogen uptake in boron nitride nanotubes at room temperature. J Am Chem Soc 124:7672–7673

    Article  CAS  PubMed  Google Scholar 

  48. Reddy ALM, Tanur AE, Walker GC (2010) Synthesis and hydrogen storage properties of different types of boron nitride nanostructures. Int J Hydrog Energy 35:4138–4143

    Article  CAS  Google Scholar 

  49. Tang C, Bando Y, Ding X, Qi S, Golberg D (2002) Catalyzed collapse and enhanced hydrogen storage of BN nanotubes. J Am Chem Soc 124:14550–14551

    Article  CAS  Google Scholar 

  50. Li J, Lin J, Xu X, Zhang X, Xue Y, Mi J, Mo Z, Fan Y, Hu L, Yang X, Zhang J, Meng F, Yuan S, Tang C (2013) Porous boron nitride with a high surface area: hydrogen storage and water treatment. Nanotechnology 24:155603 (7pp)

    Article  CAS  PubMed  Google Scholar 

  51. Lei W, Zhang H, Wu Y, Zhang B, Liu D, Qin S, Liu Z, Liu L, Ma Y, Chen Y (2014) Oxygen-doped boron nitride nanosheets with excellent performance in hydrogen storage. Nano Energy 6:219–224

    Article  CAS  Google Scholar 

  52. Dundar-Tekkaya E, Yurum Y (2016) Mesoporous MCM-41 material for hydrogen storage: a short review. Int J Hydrog Energy 41:9789–9795

    Article  CAS  Google Scholar 

  53. Ghasemi M, Daud WRW, Alam J, Ilbeygi H, Sedighi M, Ismail AF, Yazdi MH, Aljlil SA (2016) Treatment of two different water resources in desalination and microbial fuel cell processes by poly sulfone/sulfonated poly ether ether ketone hybrid membrane. Energy 96:303–313

    Article  CAS  Google Scholar 

  54. Strathmann H (1991) Fundamentals of membrane separation processes. In: Costa CA, Cabral JS (eds) Chromatographic and membrane processes in biotechnology, NATO ASI Series (Series E: Applied Sciences), vol 204. Springer, Dordrecht

    Google Scholar 

  55. Xi J, Qiu X, Li J, Tang X, Zhu W, Chen L (2006) PVDF–PEO blends based microporous polymer electrolyte: effect of PEO on pore configurations and ionic conductivity. J Power Sources 157:501–506

    Article  CAS  Google Scholar 

  56. Lim SS, Daud WRW, Jahim JM, Ghasemi M, Chong PS, Ismail M (2012) Sulfonated poly(ether ether ketone)/poly(ether sulfone) composite membranes as an alternative proton exchange membrane in microbial fuel cells. Int J Hydrog Energy 37:11409–11424

    Article  CAS  Google Scholar 

  57. Leong JX, Daud WRW, Ghasemi M, Ahmad A, Ismail M, Liew KB (2015) Composite membrane containing graphene oxide in sulfonated polyether ether ketone in microbial fuel cell applications. Int J Hydrog Energy 40:11604–11614

    Article  CAS  Google Scholar 

  58. Sumisha A, Arthanareeswaran G, Ismail AF, Kumar DP, Shankar MV (2015) Functionalized titanate nanotube–polyetherimide nanocomposite membrane for improved salt rejection under low pressure nanofiltration. RSC Adv 5:39464–39473

    Article  CAS  Google Scholar 

  59. Choudhury A (2010) Dielectric and piezoelectric properties of polyetherimide/BaTiO3 nanocomposites. Mater Chem Phys 121:280–285

    Article  CAS  Google Scholar 

  60. Amancio-Filho ST, Roeder J, Nunes SP, Santos JF, Beckmann F (2008) Thermal degradation of polyetherimide joined by friction riveting (FricRiveting). Part I: influence of rotation speed. Polym Degrad Stab 93:1529–1538

    Article  CAS  Google Scholar 

  61. Chen B-K, Su C-T, Tseng M-C, Tsay S-Y (2006) Preparation of polyetherimide nanocomposites with improved thermal, mechanical and dielectric properties. Polym Bull 57:671–681

    Article  CAS  Google Scholar 

  62. Kumari S, Sharma OP, Gusain R, Mungse HP, Kukrety A, Kumar N, Sugimura H, Khatri OP (2015) Alkyl-chain-grafted hexagonal boron nitride nanoplatelets as oil dispersible additives for friction and wear reduction. ACS Appl Mater Interfaces 7:3708–3716

    Article  CAS  PubMed  Google Scholar 

  63. Kim KS, Kingston CT, Hrdina A, Jakubinek MB, Guan J, Plunkett M, Simard B (2014) Hydrogen-catalyzed, pilot-scale production of small-diameter boron nitride nanotubes and their macroscopic assemblies. ACS Nano 8:6211–6220

    Article  CAS  PubMed  Google Scholar 

  64. Yah WO, Takahara A, Lvov YM (2012) Selective modification of halloysite lumen with octadecylphosphonic acid: new inorganic tubular micelle. J Am Chem Soc 134:1853–1859

    Article  CAS  PubMed  Google Scholar 

  65. Abdullayev EL, Joshi A, Wei W, Zhao Y, Lvov Y (2012) Enlargement of halloysite nanotube lumen by selective etching of aluminum oxide. ACS Nano 6:7216–7226

    Article  CAS  PubMed  Google Scholar 

  66. Zhang Y, Xie Y, Tang A, Zhou Y, Ouyang J, Yang H (2014) Precious-metal nanoparticles anchored onto functionalized halloysite nanotubes. Ind Eng Chem Res 53:5507–5514

    Article  CAS  Google Scholar 

  67. Henriquez CMG, Tagle LH, Terraza CA, Gonzalez AB, Volkmann UG, Cabrera AL, Ramos-Moore E, Pavez-Moreno M (2012) Structural symmetry breaking of silicon-containing poly(amide-imide) oligomers and its relation to electrical conductivity and Raman-active vibrations. Polym Int 61:197–204

    Article  CAS  Google Scholar 

  68. Filho PFF, Freire PTC, Lima KCV, Filho JM, Melo FEA (2008) High temperature Raman spectra of L-leucine crystals. Braz J Phys 38:131–137

    Article  Google Scholar 

  69. Vuiblet V, Nguyen TT, Wynckel A, Fere M, Van-Gulick L, Untereiner V, Birembaut P, Rieu P, Piot O (2015) Contribution of Raman spectroscopy in nephrology: a candidate technique to detect hydroxyethyl starch of third generation in osmotic renal lesions. Analyst 140:7382–7390

    Article  CAS  PubMed  Google Scholar 

  70. Gehk R, Perry CH (1966) Normal modes in hexagonal boron nitride. Phys Rev 146:543–547

    Article  Google Scholar 

  71. Song L, Ci L, Lu H, Sorokin PB, Jin C, Ni J, Kvashnin AG, Kvashnin DG, Lou J, Yakobson BI, Ajayan PM (2010) Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett 10:3209–3215

    Article  CAS  PubMed  Google Scholar 

  72. Zhi C, Bando Y, Tang C, Golberg D (2005) Phonon characteristics and cathodoluminescence of boron nitride nanotubes. Appl Phys Lett 86:213110

    Article  CAS  Google Scholar 

  73. Pitchan MK, Bhowmik S, Balachandran M, Abraham M (2016) Effect of surface functionalization on mechanical properties and decomposition kinetics of high performance polyetherimide/MWCNT nano composites. Compos Part A 90:147–160

    Article  CAS  Google Scholar 

  74. Barbosa-Coutinho E, Salim VMM, Borges CP (2003) Preparation of carbon hollow fiber membranes by pyrolysis of polyetherimide. Carbon 41:1707–1714

    Article  CAS  Google Scholar 

  75. Zhang C, Liu Y, Li B, Tan B, Chen C-F, Xu H-B, Yang X-L (2012) Triptycene-based microporous polymers: synthesis and their gas storage properties. ACS Macro Lett 1:190–193

    Article  CAS  Google Scholar 

  76. Ghanem BS, Msayib KJ, McKeown NB, Harris KDM, Pan Z, Budd PM, Butler A, Selbie J, Bookc D, Walton A (2007) A triptycene-based polymer of intrinsic microporosity that displays enhanced surface area and hydrogen adsorption. Chem Commun 1:67–69

  77. Ghanem BS, Hashem M, Harris KDM, Msayib KJ, Xu M, Budd PM, Chaukura N, Book D, Tedds S, Walton A, McKeown NB (2010) Triptycene-based polymers of intrinsic microporosity: organic materials that can be tailored for gas adsorption. Macromol 43:5287–5294

    Article  CAS  Google Scholar 

  78. Makhseed S, Samuel J (2008) Hydrogen adsorption in microporous organic framework polymer. Chem Commun 36:4342–4344

  79. Muthu RN, Rajashabala S, Kannan R (2016) Hexagonal boron nitride (h-BN) nanoparticles decorated multi-walled carbon nanotubes (MWCNT) for hydrogen storage. Renew Energy 85:387–394

    Article  CAS  Google Scholar 

  80. Lochan RC, Head-Gordon M (2006) Computational studies of molecular hydrogen binding affinities: the role of dispersion forces, electrostatics, and orbital interactions. Phys Chem Chem Phys 8:1357–1370

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

One of the authors, Dr. S. Rajashabala, acknowledges the University Grants Commission of India for providing grant to carry out this work under UGC-MRP (F.No. 41-893/2012 (SR)). The facilities provided by UGC-UPE for micro-Raman and USIC-MKU for FTIR studies are acknowledged.

Funding

This study was funded by UGC-MRP [F.No. 41-893/2012 (SR)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Rajashabala.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muthu, R.N., Rajashabala, S. & Kannan, R. Synthesis and characterization of microporous hybrid nanocomposite membrane as potential hydrogen storage medium towards fuel cell applications. Ionics 25, 3561–3575 (2019). https://doi.org/10.1007/s11581-019-02957-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-02957-y

Keywords

Navigation