Skip to main content
Log in

A novel carbon film electrode for supercapacitor by deposition of precursor sol on the current collector, followed by carbonization and activation in situ

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

This article describes the making of a carbon electrode, where the precursor sol is directly electrosprayed on the current collector. The gel was cured in situ, and the use of carbon fiber paper ensured sufficient adhesion for such processing. Prior to carbonization of resorcinol-formaldehyde (RF) gel, the solvent is removed by lyophilization, whereby the internal pore structure is least affected. The carbon pores are activated by heating the composite in a CO2 environment. The features of nanoporosity and the oxygen functionality in the film after CO2 activation are evident from bulk characterization, e.g., BET, FTIR, and XRD. The specific capacitance of such carbon film with aqueous KOH solution as electrolyte is found to be more than 500 F g−1 at current density of 1 A g−1. 99.12% of this capacitance is retained after 1000 charge-discharge cycles. The product quality is further analyzed with reference to the mode of solvent removal from the RF sol and the extent of CO2 exposure during activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kotz R, Carlen M (2000) Principles and applications of electrochemical capacitors. Electrochim Acta 45:2483–2498. https://doi.org/10.1016/S0013-4686(00)00354-6

    Article  CAS  Google Scholar 

  2. Pandolfo AG, Hollenkamp AF (2006) Carbon properties and their role in supercapacitors. J Power Sources 157:11–27. https://doi.org/10.1016/j.jpowsour.2006.02.065

    Article  CAS  Google Scholar 

  3. Frackowiak E, Béguin F (2001) Carbon materials for the electrochemical storage of energy in capacitors. Carbon N. Y. 39:937–950. https://doi.org/10.1016/S0008-6223(00)00183-4.

    Article  CAS  Google Scholar 

  4. Zhai Y, Dou Y, Zhao D, Fulvio PF, Mayes RT, Sheng D (2011) Carbon materials for chemical capacitive energy storage. Adv Mater 23:4828–4850. https://doi.org/10.1002/adma.201100984

    Article  CAS  PubMed  Google Scholar 

  5. Yan J, Wang Q, Wei T, Fan Z (2014) Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv Energy Mater 4:1300816. https://doi.org/10.1002/aenm.201300816

    Article  CAS  Google Scholar 

  6. Yang Z, Ren J, Zhang Z, Chen X, Guan G, Qiu L, Zhang Y, Peng H (2015) Recent advancement of nanostructured carbon for energy applications. Chem Rev 115:5159–5223. https://doi.org/10.1021/cr5006217

    Article  CAS  Google Scholar 

  7. Azman NHN, Mamat Mat MS, Nazir LH, Ngee YS (2018) Graphene-based ternary composites for supercapacitors. Int J Energy Res 42:2104–2116. https://doi.org/10.1002/er.4001

    Article  CAS  Google Scholar 

  8. González A, Goikolea E, Barrena JA, Mysyk R (2016) Review on supercapacitors: technologies and materials. Renew Sust Energ Rev 58:1189–1206. https://doi.org/10.1016/j.rser.2015.12.249

    Article  CAS  Google Scholar 

  9. Kandasamy SK, Kandasamy K (2018) Recent advances in electrochemical performances of graphene composite (graphene-polyaniline/polypyrrole/activated carbon/carbon nanotube) electrode materials for supercapacitor: a review. J Inorg Organomet Polym Mater 28:1–26. https://doi.org/10.1007/s10904-018-0779-x

    Article  CAS  Google Scholar 

  10. Hooch Antink W, Choi Y, Seong K, Kim JM, Piao Y (2018) Recent progress in porous graphene and reduced graphene oxide-based nanomaterials for electrochemical energy storage devices. Adv Mater Interfaces 5:1701212. https://doi.org/10.1002/admi.201701212

  11. Kumar S, Nehra M, Kedia D, Dilbaghi N, Tankeshwar K, Kim KH (2018) Carbon nanotubes: a potential material for energy conversion and storage. Prog Energy Combust Sci 64:219–253. https://doi.org/10.1016/j.pecs.2017.10.005

    Article  Google Scholar 

  12. Mykhailiv O, Zubyk H, Plonska-Brzezinska ME (2017) Carbon nano-onions: unique carbon nanostructures with fascinating properties and their potential applications. Inorganica Chim Acta 468:49–66. https://doi.org/10.1016/j.ica.2017.07.021

    Article  CAS  Google Scholar 

  13. Job N, Pirard R, Marien J, Pirard JP (2004) Porous carbon xerogels with texture tailored by pH control during sol-gel process. Carbon N. Y. 42:619–628. https://doi.org/10.1016/j.carbon.2003.12.072.

    Article  CAS  Google Scholar 

  14. Al-Muhtaseb SA, Ritter JA (2003) Preparation and properties of resorcinol formaldehyde organic and carbon gels. Adv Mater 15:101–114. https://doi.org/10.1002/adma.200390020

    Article  CAS  Google Scholar 

  15. Elkhatat AM, Al-Muhtaseb SA (2011) Advances in tailoring resorcinol-formaldehyde organic and carbon gels. Adv Mater 23:2887–2903. https://doi.org/10.1002/adma.201100283

    Article  CAS  PubMed  Google Scholar 

  16. Lin C, Ritter JA (1997) Effect of synthesis pH on the structure of carbon xerogels. Carbon N. Y. 35:1271–1278. https://doi.org/10.1016/S0008-6223(97)00069-9.

    Article  CAS  Google Scholar 

  17. Job N, Théry A, Pirard R, Marien J, Kocon L, Rouzaud JN, Béguin F, Pirard JP (2005) Carbon aerogels, cryogels and xerogels: influence of the drying method on the textural properties of porous carbon materials. Carbon N. Y. 43:2481–2494. https://doi.org/10.1016/j.carbon.2005.04.031.

    Article  CAS  Google Scholar 

  18. Tamon H, Ishizaka H, Yamamoto T, Suzuki T (1999) Preparation of mesoporous carbon by freeze drying. Carbon N. Y. 37:2049–2055. https://doi.org/10.1016/S0008-6223(99)00089-5.

    Article  CAS  Google Scholar 

  19. Tamon H, Ishizaka H, Yamamoto T, Suzuki T (2000) Influence of freeze-drying conditions on the mesoporosity of organic gels as carbon precursors. Carbon N. Y. 38:1099–1105. https://doi.org/10.1016/S0008-6223(99)00235-3.

    Article  CAS  Google Scholar 

  20. Babić B, Kaluderović B, Vračar L, Krstajić N (2004) Characterization of carbon cryogel synthesized by sol-gel polycondensation and freeze-drying. Carbon N. Y. 42:2617–2624. https://doi.org/10.1016/j.carbon.2004.05.046.

    Article  Google Scholar 

  21. Chavhan MP, Ganguly S (2017) Carbon cryogel from resorcinol formaldehyde: tuning of processing steps and activation for use in supercapacitor. Mater Technol 32:744–754. https://doi.org/10.1080/10667857.2017.1351145

    Article  CAS  Google Scholar 

  22. Tsuchiya T, Mori T, Iwamura S, Ogino I, Mukai SR (2014) Binderfree synthesis of high-surface-area carbon electrodes via CO 2 activation of resorcinol – formaldehyde carbon xerogel disks: analysis of activation process. Carbon N. Y. 76:240–249. https://doi.org/10.1016/j.carbon.2014.04.074.

    Article  CAS  Google Scholar 

  23. Wang H, Gao Q, Hu J (2009) High hydrogen storage capacity of porous carbons prepared by using activated carbon. J Am Chem Soc 131:7016–7022. https://doi.org/10.1021/ja8083225

    Article  CAS  PubMed  Google Scholar 

  24. Contreras MS, Páez CA, Zubizarreta L, Léonard A, Blacher S, Olivera-Fuentes CG, Arenillas A, Pirard JP, Job N (2010) A comparison of physical activation of carbon xerogels with carbon dioxide with chemical activation using hydroxides. Carbon N. Y. 48:3157–3168. https://doi.org/10.1016/j.carbon.2010.04.054.

    Article  CAS  Google Scholar 

  25. Busom J, Schreiber A, Tolosa A, Jackel N, Grobelsek I, Peter NJ, Presser V (2016) Sputtering of sub-micrometer aluminum layers as compact , high- performance , light-weight current collector for supercapacitors. J Power Sources 329:432–440. https://doi.org/10.1016/j.jpowsour.2016.08.084

    Article  CAS  Google Scholar 

  26. S. Ganguly, M.P. Chavhan, An improved carbon electrode for electric double layer capacitor devices and a method of fabricating said improved carbon electrode, India Pat, 201631000006, 2016

  27. Chavhan MP, Ganguly S (2016) Electrospray of precursor sol on carbon paper and in situ carbonization for making supercapacitor electrodes. Ind Eng Chem Res 55:10073–10083. https://doi.org/10.1021/acs.iecr.6b02227

    Article  CAS  Google Scholar 

  28. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl Chem 57:603–619. https://doi.org/10.1351/pac198557040603

    Article  CAS  Google Scholar 

  29. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-reinoso F, Rouquerol J, Sing KSW (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87:1051–1069. https://doi.org/10.1515/pac-2014-1117.

    Article  CAS  Google Scholar 

  30. Liu Y, Xue JS, Zheng T, Dahn JR (1996) Mechanism of lithium insertion in hard carbons prepared by pyrolysis of epoxy resins. Carbon N. Y. 34:193–200. https://doi.org/10.1016/0008-6223(96)00177-7.

    Article  CAS  Google Scholar 

  31. Qu D (2008) Investigation of hydrogen physisorption active sites on the surface of porous carbonaceous materials. Chem Eur J 14:1040–1046. https://doi.org/10.1002/chem.200701042

    Article  CAS  PubMed  Google Scholar 

  32. Xiang X, Huang Z, Liu E, Shen H, Tian Y, Xie H, Wu Y, Wu Z (2011) Lithium storage performance of carbon nanotubes prepared from polyaniline for lithium-ion batteries. Electrochim Acta 56:9350–9356. https://doi.org/10.1016/j.electacta.2011.08.014

    Article  CAS  Google Scholar 

  33. Zhu Y, Xiang X, Liu E, Wu Y, Xie H, Wu Z, Tian Y (2012) An activated microporous carbon prepared from phenol-melamine-formaldehyde resin for lithium ion battery anode. Mater Res Bull 47:2045–2050. https://doi.org/10.1016/j.materresbull.2012.04.003

    Article  CAS  Google Scholar 

  34. Batalla García B, Feaver AM, Zhang Q, Champion RD, Cao G, Fister TT, Nagle KP, Seidler GT (2008) Effect of pore morphology on the electrochemical properties of electric double layer carbon cryogel supercapacitors. J Appl Phys 104:1–9. https://doi.org/10.1063/1.2949263.

    Article  Google Scholar 

  35. Sepehri S, García BB, Zhang Q, Cao G (2009) Enhanced electrochemical and structural properties of carbon cryogels by surface chemistry alteration with boron and nitrogen. Carbon N Y 47:1436–1443. https://doi.org/10.1016/j.carbon.2009.01.034.

    Article  CAS  Google Scholar 

  36. Kraiwattanawong K, Sano N, Tamon H (2013) Capacitive performance of binder-free carbon/carbon composite cryogels. Microporous Mesoporous Mater 165:228–233. https://doi.org/10.1016/j.micromeso.2012.08.022

    Article  CAS  Google Scholar 

  37. Zapata-Benabithe Z, Moreno-Castilla C, Carrasco-Marín F (2015) Effect of dilution ratio and drying method of resorcinol-formaldehyde carbon gels on their electrocapacitive properties in aqueous and non-aqueous electrolytes. J Sol-Gel Sci Technol 75:407–412. https://doi.org/10.1007/s10971-015-3713-5

    Article  CAS  Google Scholar 

  38. Zapata-Benabihe Z, Moreno-Castilla C, Carrasco-Marín F (2014) Influence of the boron precursor and drying method on surface properties and electrochemical behavior of boron-doped carbon gels. Langmuir 30:1716–1722. https://doi.org/10.1021/la404667y

    Article  CAS  PubMed  Google Scholar 

Download references

Symbols

SBET BET specific area

Smic micropore surface area

Smeso mesopore surface area

Vtot total pore volume

Vmic micropore volume

Vmeso mesopore volume

Dav average pore size

Cs specific capacitance of single electrode

I current

V applied potential window

IR voltage drop

m mass of active material of a single electrode

η coulombic efficiency

tc charging time

td discharging time

Funding

This study was partially funded by the Department of Science and Technology, Govt. of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somenath Ganguly.

Electronic supplementary material

ESM 1

(DOCX 1816 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chavhan, M.P., Ganguly, S. A novel carbon film electrode for supercapacitor by deposition of precursor sol on the current collector, followed by carbonization and activation in situ. Ionics 25, 2373–2382 (2019). https://doi.org/10.1007/s11581-018-2631-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2631-2

Keywords

Navigation