Skip to main content
Log in

Synthesis and study of pyridine-containing sulfonated polybenzimidazole multiblock copolymer for proton exchange membrane fuel cells

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

To improve the chemical stability and acid doping levels of proton exchange membranes, a series of sulfonated polybenzimidazole multiblock copolymers containing pyridine rings (sPBI40-b-PyPBI5-b-PIx) was synthesized. All the copolymers exhibited excellent solubility. The proton exchange membranes were prepared using a solvent casting method. All the membranes were characterized by thermal stability, a tension test, chemical stability, dimensional stability, PA-doping ability, and proton conductivity. All of the membranes had good thermal stability, mechanical properties, and dimensional stability. The proton conductivity of sPBI40-b-PyPBI5-b-PI5 (ion exchange capacity, IEC = 1.83 mmol g−1) was 0.018 S cm−1 at 105 °C and 100% relative humidity. The proton conductivity of the sPBI40-b-PyPBI5-b-PI5 membrane with the highest PA uptake (199.8%) reached 0.23 S cm−1 at 180 °C. The high doping level and the proton conductivity were due to the pyridine group which increased the basicity of the copolymer. The chemical stability of the membranes, which was also a consequence of introducing the pyridine group, was better than that of sPBI-b-PI which does not have a pyridine group. This series of block copolymers have a promising application in proton exchange membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Steele BCH, Heinzel A (2001) Materials for fuel-cell technologies. Nature 414:345–352

    Article  CAS  PubMed  Google Scholar 

  2. Fredrickson GH, Bates FS (1996) Dynamics of block copolymers: theory and experiment. Annu Rev Mater Sci 26:501–550

    Article  CAS  Google Scholar 

  3. Vallejo E, Pourcelly G, Gavach C, Mercier R, Pineri M (1999) Sulfonated polyimides as proton conductor exchange membranes. Physicochemical properties and separation H+/Mz+ by electrodialysis comparison with a perfluorosulfonic membrane. J Membr Sci 160:127–137

    Article  CAS  Google Scholar 

  4. Genies C, Mercier R, Sillion B, Cornet N, Gebel G, Pineri M (2001) Soluble sulfonated naphthalenic polyimides as materials for proton exchange membranes. Polymer 42:359–373

    Article  CAS  Google Scholar 

  5. Y. Woo, S.Y. Oh, Y.S. Kang et al (2003) Synthesis and characterization of sulfonated polyimide membranes for direct methanol fuel cell. J Membr Sci 220:31–45

  6. Yin Y, Yamada O, Hayashi S, Tanaka K, Kita H, Okamoto KI (2006) Chemically modified proton-conducting membranes based on sulfonated polyimides: improved water stability and fuel-cell performance. J Polym Sci Part A: Polym Chem 44:3751–3762

    Article  CAS  Google Scholar 

  7. Zou LJ, Roddecha S, Anthamatten M (2009) Morphology, hydration, and proton transport in novel sulfonated polyimide-silica nanocomposites. Polymer 50:3136–3144

    Article  CAS  Google Scholar 

  8. Chen KC, Chen XB, Yaguchi K et al (2009) Synthesis and properties of novel sulfonated polyimides bearing sulfophenyl pendant groups for fuel cell application. Polymer 50:510–518

    Article  CAS  Google Scholar 

  9. Hu ZX, Yin Y, Kita H et al (2007) Synthesis and properties of novel sulfonated polyimides bearing sulfophenyl pendant groups for polymer electrolyte fuel cell application. Polymer 48:1962–1971

    Article  CAS  Google Scholar 

  10. Meyer G, Gebel G, Gonon L, Capron P, Marscaq D, Marestin C, Mercier R (2006) Degradation of sulfonated polyimide membranes in fuel cell conditions. J Power Sources 157:293–301

    Article  CAS  Google Scholar 

  11. Yin Y, Du Q, Qin YZ et al (2011) Sulfonated polyimides with flexible aliphatic side chains for polymer electrolyte fuel cells. J Membr Sci 367:211–219

    Article  CAS  Google Scholar 

  12. Pu H, Qin Y, Tang L, Teng X, Chang Z (2009) Studies on anhydrous proton conducting membranes based on imidazole derivatives and sulfonated polyimide. Electrochim Acta 54:2603–2609

    Article  CAS  Google Scholar 

  13. Yao HY, Song NN, Shi KX et al (2016) Highly sulfonated co-polyimides containing hydrophobic cross-linked networks as proton exchange membranes. Polym Chem 7:4728–4735

    Article  CAS  Google Scholar 

  14. Christiani L, Hilaire S, Sasaki K, Nishihara M (2014) Evaluation of proton conductivity of sulfonated polyimide/dihydroxy naphthalene charge-transfer complex hybrid membranes. J Polym Sci Part A: Polym Chem 52:2991–2997

    Article  CAS  Google Scholar 

  15. Glipa X, ElHaddad M, Jones DJ et al (1997) Synthesis and characterisation of sulfonated polybenzimidazole: a highly conducting proton exchange polymer. Solid State Ionics 97:323–331

    Article  CAS  Google Scholar 

  16. Wang JT-W, Hsu SL-C (2011) Enhanced high-temperature polymer electrolyte membrane for fuel cells based on polybenzimidazole and ionic liquids. Electrochim Acta 56:2842–2846

    Article  CAS  Google Scholar 

  17. Qian GQ, Benicewicz BC (2009) Synthesis and characterization of high molecular weight hexafluoroisopropylidene-containing polybenzimidazole for high-temperature polymer electrolyte membrane fuel cells. J Polym Sci Part A: Polym Chem 47:4064–4073

    Article  CAS  Google Scholar 

  18. Jouanneau J, Gonon L, Gebel G, Martin V, Mercier R (2010) Synthesis and characterization of ionic conducting sulfonated polybenzimidazoles. J Polym Sci Part A: Polym Chem 48:1732–1742

    Article  CAS  Google Scholar 

  19. Bai Z, Putthanarat S, Rodrigues SJ, Dang TD (2011) Properties and performance of composite electrolyte membranes based on sulfonated poly(arylenethioethersulfone) and sulfonated polybenzimidazole. Polymer 52:3381–3388

    Article  CAS  Google Scholar 

  20. Xu H, Chen K, Guo X, Fang J, Yin J (2007) Synthesis of novel sulfonated polybenzimidazole and preparation of cross-linked membranes for fuel cell application. Polymer 48:5556–5564

    Article  CAS  Google Scholar 

  21. Li NW, Cui ZM, Zhang SB et al (2007) Sulfonated polyimides bearing benzimidazole groups for proton exchange membranes. Polymer 48:7255–7263

    Article  CAS  Google Scholar 

  22. Chen JC, Wu JA, Lee CY et al (2015) Novel polyimides containing benzimidazole for temperature proton exchange membrane fuel. J Membr Sci 483:144–154

    Article  CAS  Google Scholar 

  23. Pan HY, Chen SX, Zhang YY et al (2015) Preparation and properties of the cross-linked sulfonated polyimide containing benzimidazole as electrolyte membranes in fuel cells. J Membr Sci 476:87–94

    Article  CAS  Google Scholar 

  24. Geormezi M, Chochos CL, Gourdoupi N, Neophytides SG, Kallitsis JK (2011) High performance polymer electrolytes based on main and side chain pyridine aromatic polyethers for high and medium temperature proton exchange membrane fuel cells. J Power Sources 196:9382–9390

    Article  CAS  Google Scholar 

  25. Molleo MA, Chen X, Ploehn HJ, Fishel KJ, Benicewicz BC (2014) High polymer content 3,5-pyridine-polybenzimidazole copolymer membranes with improved compressive properties. Fuel Cells 14:16–25

    Article  CAS  Google Scholar 

  26. Molleo MA, Chen X, Ploehn HJ, Benicewicz BC (2015) High polymer content 2,5-pyridine-polybenzimidazole copolymer membranes with improved compressive properties. Fuel Cells 15:150–159

    Article  CAS  Google Scholar 

  27. Yang JS, Xu YX, Zhou L et al (2013) Hydroxyl pyridine containing polybenzimidazole membranes for proton exchange membrane fuel cells. J Membr Sci 446:318–325

    Article  CAS  Google Scholar 

  28. Quartarone E, Villa DC, Angioni S, Mustarelli P (2015) Facile and green assembly of nanocomposite membranes for fuel cells. Chem Commun 51:1983–1986

    Article  CAS  Google Scholar 

  29. Yu SC, Hou SJ, Chan WK (1999) Synthesis, metal complex formation, and electronic properties of a novel conjugate polymer with a tridentate 2,6-bis(benzimidazol-2-yl)pyridine ligand. Macromolecules 32:5251–5256

    Article  CAS  Google Scholar 

  30. Quartarone E, Magistris A, Mustarelli P, Grandi S, Carollo A, Zukowska GZ, Garbarczyk JE, Nowinski JL, Gerbaldi C, Bodoardo S (2009) Pyridine-based PBI composite membranes for PEMFCs. Fuel Cells 9:349–355

    Article  CAS  Google Scholar 

  31. Xiao L, Zhang H, Jana T, Scanlon E, Chen R, Choe EW, Ramanathan LS, Yu S, Benicewicz BC (2005) Synthesis and characterization of pyridine-based polybenzimidazoles for high temperature polymer electrolyte membrane fuel cell applications. Fuel Cells 5:287–295

    Article  CAS  Google Scholar 

  32. Asano N, Miyatake K, Watanabe M (2006) Sulfonated block polyimide copolymers as a proton-conductive membrane. J Polym Sci Part A: Polym Chem 44:2744–2748

    Article  CAS  Google Scholar 

  33. Yamazaki K, Tanaka M, Kawakami H (2015) Preparation and characterization of sulfonated block-graft copolyimide/sulfonated polybenzimidazole blend membranes for fuel cell application. Polym Int 64:1079–1085

    Article  CAS  Google Scholar 

  34. Iizuka Y, Tanaka M, Kawakami H (2013) Preparation and proton conductivity of phosphoric acid-doped blend membranes composed of sulfonated block copolyimides and polybenzimidazole. Polym Int 62:703–708

    Article  CAS  Google Scholar 

  35. Mauritz KA, Moore RB (2004) State of understanding of Nafion. Chem Rev 104:4535–4585

    Article  CAS  PubMed  Google Scholar 

  36. Sun GH, Han KF, Yu JH et al (2016) Non-planar backbone structure polybenzimidazole membranes with excellent solubility, high proton conductivity, and better anti-oxidative for HT-PEMFCs. RSC Adv 6:91068–91076

    Article  CAS  Google Scholar 

  37. Fang J, Lin X, Cai D, He N, Zhao J (2016) Preparation and characterization of novel pyridine-containing polybenzimidazole membrane for high temperature proton exchange membrane fuel cells. J Membr Sci 502:29–36

    Article  CAS  Google Scholar 

  38. Ma T, Li YF, Zhang SJ, Yang FC, Gong CL, Zhao JJ (2010) Synthesis of a new aromatic diacid containing pyridine ring and related polybenzimidazole. Chin Chem Lett 21:976–978

    Article  CAS  Google Scholar 

  39. Carollo A, Quartarone E, Tomasi C, Mustarelli P, Belotti F, Magistris A, Maestroni F, Parachini M, Garlaschelli L, Righetti PP (2006) Developments of new proton conducting membranes based on different polybenzimidazole structures for fuel cells applications. J Power Sources 160:175–180

    Article  CAS  Google Scholar 

  40. Smitha B, Sridhar S, Khan AA (2004) Polyelectrolyte complexes of chitosan and poly(acrylic acid) as proton exchange membranes for fuel cells. Macromolecules 37:2233–2239

    Article  CAS  Google Scholar 

  41. Guo XX, Li W, Fang JH et al (2015) Synthesis and properties of novel multiblock copolyimides consisting of benzimidazole-groups-containing sulfonated polyimide hydrophilic blocks and non-sulfonated polyimide hydrophobic blocks as proton exchange membranes. Electrochim Acta 177:151–160

    Article  CAS  Google Scholar 

  42. Li XB, Ma HW, Shen YC et al (2016) Dimensionally-stable phosphoric acid-doped polybenzimidazoles for high-temperature proton exchange membrane fuel cells. J Power Sources 336:391–400

    Article  CAS  Google Scholar 

  43. Sun G, Han K, Yu J, Zhu H, Wang Z (2016) Non-planar backbone structure polybenzimidazole membranes with excellent solubility, high proton conductivity, and better anti-oxidative for HT-PEMFCs. RSC Adv 6:91068–91076

    Article  CAS  Google Scholar 

  44. Liu D, Tanaka M, Kawakami H (2015) Preparation and characterization of phosphoric acid-doped blend membrane composed of sulfonated poly(arylene ether sulfone) and polybenzimidazole for fuel cell application. J Photopolym Sci Technol 28:181–186

    Article  CAS  Google Scholar 

  45. Guler E, Sadeghi S, Gursel SA (2018) Characterization and fuel cell performance of divinylbenzene crosslinked phosphoric acid doped membranes based on 4-vinylpyridine grafting onto poly(ethylene-co-tetrafluoroethylene) films. Int J Hydrog Energy 43:8088–8099

    Article  CAS  Google Scholar 

  46. Papadimitriou KD, Andreopoulou AK, Kallitsis JK (2010) Phosphonated fully aromatic polyethers for PEMFCs applications. J Polym Sci Part A: Polym Chem 48:2817–2827

    Article  CAS  Google Scholar 

  47. Wang K, Yang L, Wei W, Zhang L, Chang G (2018) Phosphoric acid-doped poly(ether sulfone benzotriazole) for high-temperature proton exchange membrane fuel cell applications. J Membr Sci 549:23–27

    Article  CAS  Google Scholar 

Download references

Funding

The project is sponsored by the National Science Foundation of China (51303134).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyan Pan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOC 911 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Pan, H., Chang, Z. et al. Synthesis and study of pyridine-containing sulfonated polybenzimidazole multiblock copolymer for proton exchange membrane fuel cells. Ionics 25, 2255–2265 (2019). https://doi.org/10.1007/s11581-018-2610-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2610-7

Keywords

Navigation