Skip to main content
Log in

Synthesis of PANI/rGO composite as a cathode material for rechargeable lithium-polymer cells

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Graphene oxide (GO) was synthesized by an improved Hummers method and then reduced with NaBH4; GO became rGO with regular layered structure. Polyaniline (PANI)/rGO composite was prepared by a adsorption double oxidant method with rGO as a template. Some physical characterization methods (Fourier transform infrared spectroscopy analysis, X-ray diffraction, scanning electron microscope, and transmission electron microscope) were used to analyze the morphology and crystallinity of the composite. The electrochemical properties were characterized by cyclic voltammetry, impedance spectroscopy, galvanostatic charge/discharge, and rate capability. The first discharge specific capacity of the rPANI/rGO and PANI/rGO was 181.2 and 147.8 mAh/g. After 100 cycles, the capacity retention rate was still 90.2 and 88.9% separately, and the coulombic efficiency of batteries is close to 100%. These results demonstrate the composite has exciting potentials for the cathode material of lithium-ion battery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shirakawa H, Louis EJ, Macdiarmid AG et al (1977) Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. Journal of the chemical society. Chem Commun 16(16):578–580

    Article  Google Scholar 

  2. Wochnowski C, Metev S (2002) UV-laser-assisted synthesis of iodine-doped electrical conductive polythiophene. Appl Surf Sci 186(1–4):34–39

    Article  CAS  Google Scholar 

  3. Qian R, Qiu J (1987) Electrochemically prepared polypyrroles from aqueous solutions. Polym J 18(1–3):13–18

    CAS  Google Scholar 

  4. Macdiarmid AG, Shao-Lin M, Somasiri NLD et al (1985) Electrochemical characteristics of “polyaniline” cathodes and anodes in aqueous electrolytes. Mol Cryst Liq Cryst 121(1–4):187–190

    Article  CAS  Google Scholar 

  5. Macdiarmid AG, Chiang J-C, Halpern M, Huang W-S, Mu S-L, Nanaxakkara LD, Wu SW, Yaniger SI (1985) “Polyaniline”: interconversion of metallic and insulating forms. Mol Cryst Liq Cryst 121(1–4):173–180

    Article  CAS  Google Scholar 

  6. Armelin E, Pla R, Liesa F, Ramis X, Iribarren JI, Alemán C (2008) Corrosion protection with polyaniline and polypyrrole as anticorrosive additives for epoxy paint. Corros Sci 50(3):721–728

    Article  CAS  Google Scholar 

  7. Epstein AJ, Ginder JM, Zuo F, Bigelow RW, Woo HS, Tanner DB, Richter AF, Huang WS, MacDiarmid AG (1987) Insulator-to-metal transition in polyaniline. Synth Met 18(1):303–309

    Article  CAS  Google Scholar 

  8. Watanabe A, Mori K, Iwasaki Y, Nakamura Y, Niizuma S (1987) Electrochromism of polyaniline film prepared by electrochemical polymerization. Macromolecules 20(8):1793–1796

    Article  CAS  Google Scholar 

  9. Kalaivasan N, Shafi SS (2017) Enhancement of corrosion protection effect in mechanochemically synthesized polyaniline/MMT clay nanocomposites. Arab J Chem 10(2):S127–S133

    Article  CAS  Google Scholar 

  10. Wang R, Han M, Zhao Q, Ren Z, Guo X, Xu C, Hu N, Lu L (2017) Hydrothermal synthesis of nanostructured graphene/polyaniline composites as high-capacitance electrode materials for supercapacitors. Sci Rep 7:44562

    Article  CAS  PubMed Central  Google Scholar 

  11. Singu BS, Male U, Srinivasan P et al (2017) Preparation and performance of polyaniline–multiwall carbon nanotubes–titanium dioxide ternary composite electrode material for supercapacitors. J Ind Eng Chem 49

    Article  CAS  Google Scholar 

  12. Ryu KS, Kim KM, Kang SG, Joo J, Chang SH (2000) Comparison of lithium/polyaniline secondary batteries with different dopants of HCl and lithium ionic salts. J Power Sources 88(2):197–201

    Article  CAS  Google Scholar 

  13. He BL, Dong B, Wang W, Li HL (2009) Performance of polyaniline/multi-walled carbon nanotubes composites as cathode for rechargeable lithium batteries. Mater Chem Phys 114(1):371–375

    Article  CAS  Google Scholar 

  14. Liu P, Han JJ, Jiang LF, Li ZY, Cheng JN (2017) Polyaniline/multi-walled carbon nanotubes composite with core-shell structures as a cathode material for rechargeable lithium-polymer cells. Appl Surf Sci 400:446–452

    Article  CAS  Google Scholar 

  15. Ritchie A, Howard W (2006) Recent developments and likely advances in lithium-ion batteries. J Power Sources 162(2):809–812

    Article  CAS  Google Scholar 

  16. Fergus JW (2010) Recent developments in cathode materials for lithium ion batteries. J Power Sources 195(4):939–954

    Article  CAS  Google Scholar 

  17. Ozawa K (1994) Lithium-ion rechargeable batteries with LiCoO2, and carbon electrodes: the LiCoO2/C system. Solid State Ionics 69(3–4):212–221

    Article  CAS  Google Scholar 

  18. Graetz J, Hightower A, Ahn CC et al (2017) Electronic structure of chemically-delithiated LiCoO2 studied by electron energy-loss spectrometry. J Phys Chem B 106(6):1286–1289

    Article  Google Scholar 

  19. Padhi AK, Goodenough JB, Nanjundaswamy KS (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144(4):1188–1194

    Article  CAS  Google Scholar 

  20. Yi TF, Li XY, Liu H, Shu J, Zhu YR, Zhu RS (2012) Recent developments in the doping and surface modification of LiFePO4, as cathode material for power lithium ion battery. Ionics 18(6):529–539

    Article  CAS  Google Scholar 

  21. Lee HW, Muralidharan P, Kim DK (2016) Synthesis of one-dimensional spinel LiMn2O4 nanostructures as a positive electrode in lithium ion battery. J Korean Ceram Soc 48(379):379–383

    Google Scholar 

  22. Cui P, Jia Z, Li L, He T (2011) Preparation and characteristics of Sb-doped LiNiO2, cathode materials for Li-ion batteries. J Phys Chem Solids 72(7):899–903

    Article  CAS  Google Scholar 

  23. Gospodinova N, Terlemezyan L (1998) Conducting polymers prepared by oxidative polymerization: polyaniline. Prog Polym Sci 23(8):1443–1484

    Article  CAS  Google Scholar 

  24. Ameen S, Shaheer Akhtar M, Husain M (2010) A review on synthesis processing, chemical and conduction properties of polyaniline and its nanocomposites. Sci Adv Mater 2(2):441–462

    Article  CAS  Google Scholar 

  25. Liu Y, Zhou Y, Zhang S, Zhang J, Ren P, Qian C (2016) Amorphous iron phosphate/carbonized polyaniline nanorods composite as cathode material in sodium-ion batteries. J Solid State Electrochem 20(2):479–487

    Article  CAS  Google Scholar 

  26. Zhou X, He T, Chen X et al (2017) Synthesis and lithium storage properties of vanadium oxide nanotubes (VOxNTs)-polyaniline nanocomposite as cathode material for lithium ion batteries. J Mater Sci Mater Electron:1–10

  27. Dreyer DR, Park S, Bielawski CW et al (2014) The chemistry of graphene oxide. Chem Soc Rev 43(15):5288–5301

    Article  CAS  Google Scholar 

  28. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22(45):3906–3924

    Article  CAS  Google Scholar 

  29. Compton OC, Nguyen ST (2010) Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small 6(6):711–723

    Article  CAS  Google Scholar 

  30. Wang H, Hao Q, Yang X, Lu L, Wang X (2010) Effect of graphene oxide on the properties of its composite with polyaniline. ACS Appl Mater Interfaces 2(3):821–828

    Article  CAS  Google Scholar 

  31. Gui D, Liu C, Chen F, Liu J (2014) Preparation of polyaniline/graphene oxide nanocomposite for the application of supercapacitor. Appl Surf Sci 307(8):172–177

    Article  CAS  Google Scholar 

  32. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339

    Article  CAS  Google Scholar 

  33. Sun RK, Man KK, Seong-Gu K et al (2000) The charge/discharge mechanism of polyaniline films doped with LiBF4 as a polymer electrode in a Li secondary battery. Solid State Ionics 135:229–234

    Article  Google Scholar 

  34. Ryu KS, Kim KM, Kang SG, Lee GJ, Joo J, Chang SH (2000) Electrochemical and physical characterization of lithium ionic salt doped polyaniline as a polymer electrode of lithium secondary battery. Synth Met 110(3):213–217

    Article  CAS  Google Scholar 

Download references

Funding

This study is the supported by the School of Marine Science and Technology, Harbin Institute of Technology, Weihai.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia-Jun Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, RT., Han, JJ., Liu, P. et al. Synthesis of PANI/rGO composite as a cathode material for rechargeable lithium-polymer cells. Ionics 24, 3367–3373 (2018). https://doi.org/10.1007/s11581-018-2525-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2525-3

Keywords

Navigation