Skip to main content

Advertisement

Log in

Cobalt disulfide nanosphere dispersed on multi-walled carbon nanotubes: an efficient and stable electrocatalyst for hydrogen evolution reaction

  • Original Papers
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Novel cobalt disulfide on multi-walled carbon nanotubes (CoS2/MWCNTs) was synthesized via a facile one-step hydrothermal method in the presence of cetyltrimethyl ammonium bromide. The physical properties of as-prepared materials were characterized by Fourier transform infrared spectrum, X-ray diffraction, Raman spectrum, and scanning electron microscopy techniques. Physical characterizations revealed that cattierite CoS2 nanospheres dispersed on the surface of MWCNTs uniformly. In addition, electrochemical performances of as-prepared materials for hydrogen evolution reaction were investigated by polarization curves, Tafel plots, and electrochemical impedance spectrum in 0.50 M H2SO4 electrolyte. It was demonstrated that MWCNT-based electrode exhibited almost no current response while CoS2/MWCNT nanocomposite-based electrode exhibited better electrochemical performances than pure CoS2-based electrode, including lower potential of − 257 mV for 10 mA cm−2 and smaller Tafel slope of 83 mV dec−1. Furthermore, CoS2/MWCNT nanocomposite retained its high activity even after 1000 cycles of cyclic voltammetry scans, demonstrating superior stability under acidic condition. The enhanced electrocatalytic activity of CoS2/MWCNT nanocomposite-based electrode was ascribed to more exposed sulfur edges of CoS2, larger accessible surface area, and higher conductivity derived from MWCNTs. The results suggested that CoS2/MWCNT nanocomposite had a potential application to hydrogen evolution reaction.

Shown above was the synthetic procedure of CoS2/MWCNT nanocomposite via the one-step hydrothermal method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fetohi AE, Hameed RMA, El-Khatib KM, Souaya ER (2012) Ni–P and Ni–Co–P coated aluminum alloy 5251 substrates as metallic bipolar plates for PEM fuel cell applications. Int J Hydrog Energy 37(9):7677–7688

    Article  CAS  Google Scholar 

  2. Zhang G, Liu HJ, Qu JH, Li JH (2016) Two-dimensional layered MoS2: rational design, properties and electrochemical applications. Energy Environ Sci 9(4):1190–1209

    Article  CAS  Google Scholar 

  3. Cobo S, Heidkamp J, Jacques PA, Fize J, Fourmond V, Guetaz L, Jousselme B, Ivanova V, Dau H, Palacin S (2012) A janus cobalt-based catalytic material for electro-splitting of water. Nat Mater 11(9):802–807

    Article  CAS  Google Scholar 

  4. He P, Yi XF, Ma YJ, Wang W, Dong FQ, Du LC, Liu HT (2010) Effect of Gd2O3 on the hydrogen evolution property of nickel–cobalt coatings electrodeposited on titanium substrate. J Phys Chem Solids 72(11):1261–1264

    Article  Google Scholar 

  5. Zou XX, Zhang Y (2015) Noble metal-free hydrogen evolution catalysts for water splitting. Chem Soc Rev 44(15):5148–5180

    Article  CAS  Google Scholar 

  6. Walter MG, Warren EL, McKone JR, Boettcher SW, Mi Q, Santori EA, Lewis NS (2010) Solar water splitting cells. Chem Rev 110(11):6446–6473

    Article  CAS  Google Scholar 

  7. Ding SS, He P, Feng WR, Li L, Zhang GL, Chen JC, Dong FQ, He HC (2016) Novel molybdenum disulfide nanosheets–decorated polyaniline: preparation, characterization and enhanced electrocatalytic activity for hydrogen evolution reaction. J Phys Chem Solids 91:41–47

    Article  CAS  Google Scholar 

  8. Chen Z, Cummins D, Reinecke BN, Clark E, Sunkara MK, Jaramillo TF (2011) Core-shell MoO3-MoS2 nanowires for hydrogen evolution: a functional design for electrocatalytic materials. Nano Lett 11(10):4168–4175

    Article  CAS  Google Scholar 

  9. Gong Z, Wang GC, Yang L, Liu HJ, Qu JH, Li JH (2016) Highly active and stable catalysts of phytic acid-derivative transition metal phosphides for full water splitting. J Am Chem Soc 138(44):14686–14693

    Article  Google Scholar 

  10. Liu TT, Ma X, Liu DN, Hao S, Du G, Ma YJ, Asiri AM, Sun XP, Chen L (2017) Mn-Co-P nanosheets array: an efficient electrocatalyst for hydrogen evolution reaction with enhanced activity at all pH values. ACS Catal 7(1):98–102

    Article  CAS  Google Scholar 

  11. Qu Y, Medina H, Wang SW, Wang YC, Chen CW, Su TY, Manikandan A, Wang K, Shih YC, Chang JW (2016) Wafer scale phase-engineered 1T- and 2H-MoSe2/Mo core-shell 3D-hierarchical nanostructures toward efficient electrocatalytic hydrogen evolution reaction. Adv Mater 28(44):9831–9838

    Article  CAS  Google Scholar 

  12. Kayan DB, İlhan M, Koçak D (2017) Chitosan-based hybrid nanocomposite on aluminium for hydrogen production from water. Ionics 4:1–7

    Google Scholar 

  13. Li W, Gao X, Wang X, Xiong D, Huang PP, Song WG, Bao X, Liu L (2016) From water reduction to oxidation: janus Co-Ni-P nanowires as high-efficiency and ultrastable electrocatalysts for over 3000h water splitting. J Power Sources 330:156–166

    Article  CAS  Google Scholar 

  14. Li TH, Chen CJ, Lu YR, Dong CL, Liu RS (2016) Synergistic-effect-controlled CoTe2/carbon nanotube hybrid material for efficient water oxidation. J Phys Chem C 120(49):28093–28099

    Article  Google Scholar 

  15. Wang SQ, Xia WY, Liang ZS, Liu ZL, Xu CW, Li QY (2017) NiO/C enhanced by noble metal (Pt, Pd, Au) as high-efficient electrocatalyst for oxygen evolution reaction in water oxidation to obtain high purity hydrogen. Ionics 23:2161–2166

    Article  CAS  Google Scholar 

  16. Creţu R, Kellenberger A, Vaszilcsin N (2013) Enhancement of hydrogen evolution reaction onplatinum cathode by proton carriers. Int J Hydrog Energy 38(27):11685–11694

    Article  Google Scholar 

  17. Li KD, Zhang JF, Wu R, Yu YF, Zhang B (2016) Anchoring CoO domains on CoSe2 nanobelts as bifunctional electrocatalysts for overall water splitting in neutral media. Adv Sci 3(6):1500426

    Article  Google Scholar 

  18. Faber MS, Jin S (2014) Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications. Energy Environ Sci 7(11):3519–3542

    Article  CAS  Google Scholar 

  19. Zhu YB, Liu T, Li LM, Song SL, Ding R (2018) Nickel-based electrodes as catalysts for hydrogen evolution reaction in alkaline media. Ionics: 24. https://doi.org/10.1007/s11581-017-2270-z

    Article  Google Scholar 

  20. Wu C, Yang YJ, Dong D, Zhang YH, Li JH (2017) In situ coupling of CoP polyhedrons and carbon nanotubes as highly efficient hydrogen evolution reaction electrocatalyst. Small 13(15):1602873

    Article  Google Scholar 

  21. Huang Y, Gong QF, Song XN, Feng K, Nie KQ, Zhao FP, Wang YY, Zeng M, Zhong J, Li YG (2016) Mo2C nanoparticles dispersed on hierarchical carbon microflowers for efficient electrocatalytic hydrogen evolution. ACS Nano 10(12):11337–11343

    Article  CAS  Google Scholar 

  22. Morales-Guio CG, Stern LA, Hu XL (2014) Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem Soc Rev 43(18):6555–6569

    Article  CAS  Google Scholar 

  23. Huang ZP, Wang CF, Pan L, Tian F, Zhang XX, Zhang C (2013) Enhanced photoelectrochemical hydrogen production using silicon nanowires@MoS3. Nano Energy 2(6):1337–1346

    Article  CAS  Google Scholar 

  24. Gupta S, Patel N, Fernandes R, Kadrekar R, Dashora A, Yadav AK, Bhattacharyya D, Jha SN, Miotello A, Kothari DC (2016) Co–Ni–B nanocatalyst for efficient hydrogen evolution reaction in wide pH range. Appl Catal B Environ 192:126–133

    Article  CAS  Google Scholar 

  25. Ashassi-Sorkhabi H, Rezaei-Moghadam B, Asghari E, Bagheri R, Hosseinpour Z (2017) Fabrication of bridge like Pt@MWCNTs/CoS2 electrocatalyst on conductive polymer matrix for electrochemical hydrogen evolution. Chem Eng J 308:275–288

    Article  CAS  Google Scholar 

  26. Wu C, Zhang YH, Dong D, Xie HM, Li JH (2017) Co9S8 nanoparticles anchored on nitrogen and sulfur dual-doped carbon nanosheets as highly efficient bifunctional electrocatalyst for oxygen evolution and reduction reactions. Nano 9(34):12432–12440

    CAS  Google Scholar 

  27. Cui Y, Zhou CW, Li XZ, Gao Y, Zhang J (2017) High performance electrocatalysis for hydrogen evolution reaction using nickel-doped CoS2 nanostructures: experimental and DFT insights. Electrochim Acta 228:428–435

    Article  CAS  Google Scholar 

  28. Ouyang CB, Wang X, Wang SY (2015) Phosphorus-doped CoS2 nanosheet arrays as ultra-efficient electrocatalysts for the hydrogen evolution reaction. Chem Commun 51(75):14160–14163

    Article  CAS  Google Scholar 

  29. Fang L, Zhang Y, Guan YX, Zhang HJ, Wang SL, Wang Y (2017) Specific synthesis of CoS2 nanoparticles embedded in porous Al2O3 nanosheets for efficient hydrogen evolution and enhanced lithium storage. J Mater Chem A 5(6):2861–2869

    Article  CAS  Google Scholar 

  30. Faber MS, Lukowski MA, Ding Q, Kaiser NS, Jin S (2014) Earth-abundant metal pyrites (FeS2, CoS2, NiS2 and their alloys) for highly efficient hydrogen evolution and polysulfide reduction electrocatalysis. J Phys Chem C 118(37):21347–21356

    Article  CAS  Google Scholar 

  31. Lu XB, Wen ZH, Li JH (2006) Hydroxyl-containing antimony oxide bromide nanorods combined with chitosan for biosensors. Biomaterials 27(33):5740–5747

    Article  CAS  Google Scholar 

  32. Li YG, Wang HL, Xie LM, Liang YY, Hong GS, Dai HJ (2011) MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J Am Chem Soc 133(19):7296–7299

    Article  CAS  Google Scholar 

  33. Lin TW, Liu CJ, Lin JY (2013) Facile synthesis of MoS3/carbon nanotube nanocomposite with high catalytic activity toward hydrogen evolution reaction. Appl Catal B Environ 134-135(17):75–82

    Article  CAS  Google Scholar 

  34. Pal S, Sahoo M, Veettil VT, Tadi KK, Ghosh A, Satyam P, Biroju RK, Ajayan PM, Nayak SK, Narayanan TN (2017) Covalently connected carbon nanotubes as electrocatalysts for hydrogen evolution reaction through band engineering. ACS Catal 7:2676–2684

    Article  CAS  Google Scholar 

  35. Zhang YJ, Yi W, Yang L, Li D, Li JH (2004) Functionalization of single-walled carbon nanotubes with Prussian blue. Electrochem Commun 6(11):1180–1184

    Article  CAS  Google Scholar 

  36. Lin TW, Liu CJ, Dai CS (2014) Ni3S2/carbon nanotube nanocomposite as electrode material for hydrogen evolution reaction in alkaline electrolyte and enzyme-free glucose detection. Appl Catal B Environ 154-155(7):213–220

    Article  CAS  Google Scholar 

  37. Lota G, Fic K, Frackowiak E (2011) Carbon nanotubes and their composites in electrochemical applications. Energy Environ Sci 4(5):1592–1605

    Article  CAS  Google Scholar 

  38. Chakoli AN, Wan J, Feng JT, Amirian M, Sui JH, Cai W (2009) Functionalization of multiwalled carbon nanotubes for reinforcing of poly(l-lactide-co-ɛ-caprolactone) biodegradable copolymers. Appl Surf Sci 256(1):170–177

    Article  CAS  Google Scholar 

  39. Xing JC, Zhu YL, Li MY, Jiao QJ (2014) Hierarchical mesoporous CoS2 microspheres: morphology-controlled synthesis and their superior pseudocapacitive properties. Electrochim Acta 149:285–292

    Article  CAS  Google Scholar 

  40. Li T, Zhang CZ, Fan X, Li Y, Song M (2017) Degradation of oxidized multi-walled carbon nanotubes in water via photo-Fenton method and its degradation mechanism. Chem Eng J 323:37–46

    Article  CAS  Google Scholar 

  41. Tang JH, Shen JF, Li N, Ye MX (2014) A free template strategy for the synthesis of CoS2-reduced graphene oxide nanocomposite with enhanced electrode performance for supercapacitors. Ceram Int 40(10):15411–15419

    Article  CAS  Google Scholar 

  42. Nouralishahi A, Khodadadi AA, Mortazavi Y, Rashidi A, Choolaei M (2014) Enhanced methanol electro-oxidation activity of Pt/MWCNTs electro-catalyst using manganese oxide deposited on MWCNTs. Electrochim Acta 147:192–200

    Article  CAS  Google Scholar 

  43. Mitra A, Mahapatra AS, Mallick A, Chakrabarti PK (2017) Enhanced microwave absorption and magnetic phase transitions of nanoparticles of multiferroic LaFeO3 incorporated in multiwalled carbon nanotubes (MWCNTs). J Magn Magn Mater 435:117–125

    Article  CAS  Google Scholar 

  44. Chen LL, Yang WX, Liu XJ, Jia JB (2017) Flower-like CoS2/MoS2 nanocomposite with enhanced electrocatalytic activity for hydrogen evolution reaction. Int J Hydrog Energy 42(17):12246–12253

    Article  CAS  Google Scholar 

  45. Zhang HC, Li YJ, Zhang GX, Wan PB, Xu TH, Wu XC, Sun XM (2014) Highly crystallized cubic cattierite CoS2 for electrochemically hydrogen evolution over wide pH range from 0 to 14. Electrochim Acta 148:170–174

    Article  CAS  Google Scholar 

  46. Su C, Xiang JY, Wen FS, Song LZ, Mu CP, Xu DY, Hao CX, Liu ZY (2016) Microwave synthesized three-dimensional hierarchical nanostructure CoS2/MoS2 growth on carbon fiber cloth: a bifunctional electrode for hydrogen evolution reaction and supercapacitor. Electrochim Acta 212:941–949

    Article  CAS  Google Scholar 

  47. Gu HH, Huang YP, Zuo LZ, Fan W, Liu TX (2016) Electrospun carbon nanofiber@CoS2 core/sheath hybrid as efficient all-pH hydrogen evolution electrocatalyst. Inorg Chem Front 3(10):1280–1288

    Article  CAS  Google Scholar 

  48. Liu YR, Hu WH, Li X, Dong B, Shang X, Han GQ, Chai YM, Liu YQ, Liu CG (2016) Facile one-pot synthesis of CoS2-MoS2/CNTs as efficient electrocatalyst for hydrogen evolution reaction. Appl Surf Sci 384:51–57

    Article  CAS  Google Scholar 

  49. Huang JL, Hou DM, Zhou YC, Zhou WJ, Li GQ, Tang ZH, Li LG, Chen SW (2015) MoS2 nanosheet-coated CoS2 nanowire arrays on carbon cloth as three-dimensional electrodes for efficient electrocatalytic hydrogen evolution. J Mater Chem A 3(45):22886–22891

    Article  CAS  Google Scholar 

  50. Xing W, Zhang Y, Xue QZ, Yan ZF (2015) Highly active catalyst of two-dimensional CoS2/graphene nanocomposites for hydrogen evolution reaction. Nanoscale Res Lett 10(1):488–494

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Longshan Academic Talent Research Supporting Program of SWUST (17LZX406), the National Basic Research Program of China (2014CB846003), and the National Science and Technology Supported Program (2014BAC13B05). Also, we are grateful for the help of Analytical and Testing Center of Southwest University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., He, P., Jia, L. et al. Cobalt disulfide nanosphere dispersed on multi-walled carbon nanotubes: an efficient and stable electrocatalyst for hydrogen evolution reaction. Ionics 24, 3591–3599 (2018). https://doi.org/10.1007/s11581-018-2474-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2474-x

Keywords

Navigation