Skip to main content

Advertisement

Log in

Theoretical prediction of borophene monolayer as anode materials for high-performance lithium-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Three morphologies of two-dimension Boron with metallicity have been successfully synthetized by experiments. To access the potential of β12 borophene (□) and χ3 borophene monolayer (◇) as anode materials for lithium ion batteries, first-principles calculations based on density functional theory (DFT) are performed. Lithium atom is preferentially absorbed over the center of the hexagonal B atom hollow of β12 and χ3 borophene monolayer. The fully lithium storage phase of β12 and χ3 borophene monolayer corresponds to Li8B10 and Li8B16 with a theoretical specific capacity of 1983 and 1240 mA h g−1, respectively, much larger than other two-dimension materials. Interestingly, lithium ion diffusion on β12 borophene (□) monolayer is extremely fast with a low-energy barrier of 41 meV. Meanwhile, lithiated-borophene monolayer shows enhanced metallic conductivity during the whole lithiation process. Compared to the buckled borophene (△), the extremely enhanced lithium adsorption energy of β12 and χ3 phase with vacancies weakens lithium ion diffusion. Therefore, it is important to control the generation of vacancy in the buckled borophene (△) anode for lithium ion batteries. Borophene is a promising candidate with high capacity and high rate capability for anode material in lithium ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Wu L, Lee WH, Zhang J (2014) First Principles Study on the Electrochemical, Thermal and Mechanical Properties of LiCoO2 for Thin Film Rechargeable Battery. Materials Today: Proceedings 1(1):82–93. https://doi.org/10.1016/j.matpr.2014.09.017

    Article  Google Scholar 

  2. Baker TA, Friend CM, Kaxiras E (2008) Chlorine interaction with defects on the Au(111) surface: A first-principles theoretical investigation. J Chem Phys 129(10):104702. https://doi.org/10.1063/1.2975329

    Article  CAS  PubMed  Google Scholar 

  3. Ong SP, Chevrier VL, Ceder G (2011) Comparison of small polaron migration and phase separation in olivine LiMnPO4 and LiFePO4 using hybrid density functional theory. Phys Rev B 83(7):540–545

  4. Ouyang C, Shi S, Wang Z, Huang X, Chen L (2004) First-principles study of Li ion diffusion in LiFePO4. Phys Rev B 69(10):1–5

  5. Jiang J, Ouyang C, Li H, Wang Z, Huang X, Chen L (2007) First-principles study on electronic structure of LiFePO4. Solid State Commun 143(3):144–148. https://doi.org/10.1016/j.ssc.2007.05.004

    Article  CAS  Google Scholar 

  6. Li SN, Liu JB, Liu BX (2016) First principles study of nanostructured TiS2 electrodes for Na and Mg ion storage. J Power Sources 320:322–331. https://doi.org/10.1016/j.jpowsour.2016.04.122

    Article  CAS  Google Scholar 

  7. Liu C, Neale ZG, Cao G (2016) Understanding electrochemical potentials of cathode materials in rechargeable batteries. Mater Today 19(2):109–123. https://doi.org/10.1016/j.mattod.2015.10.009

    Article  CAS  Google Scholar 

  8. Rozier P, Tarascon JM (2015) Review—Li-Rich Layered Oxide Cathodes for Next-Generation Li-Ion Batteries: Chances and Challenges. J Electrochem Soc 162(14):A2490–A2499. https://doi.org/10.1149/2.0111514jes

    Article  CAS  Google Scholar 

  9. Goodenough JB (2015) Energy storage materials: A perspective. Energy Storage Materials 1:158–161. https://doi.org/10.1016/j.ensm.2015.07.001

    Article  Google Scholar 

  10. Zhang S, Du H, He J, Huang C, Liu H, Cui G, Li Y (2016) High Temperature Carbonized Grass as a High Performance Sodium Ion Battery Anode. ACS Appl Mater Interfaces 9(1):391–397. https://doi.org/10.1021/acsami.6b12542

    Article  CAS  PubMed  Google Scholar 

  11. Sun Q, Dai Y, Ma Y, Jing T, Wei W, Huang B (2016) Ab Initio Prediction and Characterization of Mo2 C Monolayer as Anodes for Lithium-Ion and Sodium-Ion Batteries. J Phys Chem Lett 7(6):937–943

  12. Zhou X, Wang Z, Chen W, Ma L, Chen D, Lee JY (2014) Facile synthesis and electrochemical properties of two dimensional layered MoS2/graphene composite for reversible lithium storage. J Power Sources 251:264–268. https://doi.org/10.1016/j.jpowsour.2013.11.060

    Article  CAS  Google Scholar 

  13. Liu Y, Zhao Y, Jiao L, Chen J (2014) A graphene-like MoS2/graphene nanocomposite as a highperformance anode for lithium ion batteries. J Mater Chem A 2(32):13109–13115. https://doi.org/10.1039/C4TA01644K

    Article  CAS  Google Scholar 

  14. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Adv Mater 22(35):3906–3924. https://doi.org/10.1002/adma.201001068

    Article  CAS  Google Scholar 

  15. Xu Z, Lv X, Li J, Chen J, Liu Q (2016) A promising anode material for sodium-ion battery with high capacity and high diffusion ability: graphyne and graphdiyne. RSC Adv 6(30):25594–25600. https://doi.org/10.1039/C6RA01870J

    Article  CAS  Google Scholar 

  16. Li Y, Xu L, Liu H, Li Y (2014) Graphdiyne and graphyne: from theoretical predictions to practical construction. Chem Soc Rev 43(8):2572–2586. https://doi.org/10.1039/c3cs60388a

    Article  CAS  PubMed  Google Scholar 

  17. Ivanovskii AL (2013) Graphynes and graphdyines. Prog Solid State Chem 41(1-2):1–19. https://doi.org/10.1016/j.progsolidstchem.2012.12.001

    Article  CAS  Google Scholar 

  18. Li W, Yang Y, Zhang G, Zhang YW (2015) Ultrafast and Directional Diffusion of Lithium in Phosphorene for High-Performance Lithium-Ion Battery. Nano Lett 15(3):1691–1697. https://doi.org/10.1021/nl504336h

    Article  CAS  PubMed  Google Scholar 

  19. Guo GC, Wei XL, Wang D, Luo Y, Liu LM (2015) Pristine and defect-containing phosphorene as promising anode materials for rechargeable Li batteries. J Mater Chem A 3(21):11246–11252

  20. Cai Y, Ke Q, Zhang G, Feng YP, Shenoy VB, Zhang Y-W (2015) Giant phononic anisotropy and unusual anharmonicity of phosphorene: interlayer coupling and strain engineering. Adv Funct Mater 25(15):2230–2236. https://doi.org/10.1002/adfm.201404294

    Article  CAS  Google Scholar 

  21. Najmaei S, Yuan J, Zhang J, Ajayan P, Lou J (2015) Synthesis and defect investigation of two dimensional molybdenum disulfide atomic layers. Acc Chem Res 48(1):31–40

  22. Zhou X, Wan LJ, Guo YG (2013) Synthesis of MoS2 nanosheet–graphene nanosheet hybrid materials for stable lithium storage. Chem Commun (Camb) 49(18):1838–1840. https://doi.org/10.1039/c3cc38780a

    Article  CAS  Google Scholar 

  23. Kong D, Wang H, Cha JJ, Pasta M, Koski KJ, Yao J, Cui Y (2013) Synthesis of MoS2and MoSe2 films with vertically aligned layers. Nano Lett 13(3):1341–1347. https://doi.org/10.1021/nl400258t

    Article  CAS  PubMed  Google Scholar 

  24. Zhang C, Wang Z, Guo Z, Lou XW (2012) Synthesis of MoS2–C one-dimensional nanostructures with improved lithium storage properties. ACS Appl Mater Interfaces 4(7):3765–3768. https://doi.org/10.1021/am301055z

    Article  CAS  PubMed  Google Scholar 

  25. Lee YH, Zhang XQ, Zhang W, Chang MT, Lin CT, Chang KD, Yu YC, Wang JT, Chang CS, Li LJ, Lin TW (2012) Synthesis of large-area mos2 atomic layers with chemical vapor deposition. Adv Mater 24(17):2320–2325. https://doi.org/10.1002/adma.201104798

    Article  CAS  PubMed  Google Scholar 

  26. Xu C, Wang L, Liu Z, Chen L, Guo J, Kang N, Ma XL, Cheng HM, Ren W (2015) Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nat Mater 14(11):1135–1141. https://doi.org/10.1038/nmat4374

    Article  CAS  PubMed  Google Scholar 

  27. Zhang H-J, Wang K-X, Wu X-Y, Jiang Y-M, Zhai Y-B, Wang C, Wei X, Chen J-S (2014) MoO2/Mo2C heteronanotubes function as high-performance Li-ion battery electrode. Adv Funct Mater 24(22):3399–3404. https://doi.org/10.1002/adfm.201303856

    Article  CAS  Google Scholar 

  28. Mannix AJ, Zhou XF, Kiraly B, Wood JD, Alducin D, Myers BD et al (2015) Synthesis of borophenes: anisotropic two-dimensional boron polymorphs. Science 350(6267):1513–1516

  29. Feng B, Zhang J, Zhong Q, Li W, Li S, Li H, Cheng P, Meng S, Chen L, Wu K (2016) Experimental realization of two-dimensional boron sheets. Nat Chem 8(6):563–568. https://doi.org/10.1038/nchem.2491

    Article  CAS  PubMed  Google Scholar 

  30. Penev ES, Kutana A, Yakobson BI (2016) Can two-dimensional boron superconduct? Nano Lett 16(4):2522–2526. https://doi.org/10.1021/acs.nanolett.6b00070

    Article  CAS  PubMed  Google Scholar 

  31. Jiang HR, Lu Z, Wu MC, Ciucci F, Zhao TS (2016) Borophene: a promising anode material offering high specific capacity and high rate capability for lithium-ion batteries. Nano Energy 23:97–104. https://doi.org/10.1016/j.nanoen.2016.03.013

    Article  CAS  Google Scholar 

  32. Jena NK, Araujo RB, Shukla V, Ahuja R (2017) Borophane as a bench-mate of graphene: a potential 2d material for anode of li and na-ion batteries. ACS Appl Mater Interfaces 9(19):16148–16158

  33. Mortazavi B, Dianat A, Rahaman O, Cuniberti G, Rabczu T (2016) Borophene as an anode material for Ca, Mg, Na or Li ion storage: A first-principle study. J Power Sources 329:456–461. https://doi.org/10.1016/j.jpowsour.2016.08.109

    Article  CAS  Google Scholar 

  34. Mortazavia B, Rahamana O, Ahzib S, Rabczuk T (2017) Flat borophene films as anode materials for Mg, Na or Li-ion batteries with ultra high capacities: a first-principles study. Appl Materials Today 8:60–67. https://doi.org/10.1016/j.apmt.2017.04.010

    Article  Google Scholar 

  35. Zhang Y, Wu ZF, Gao PF, Zhang S, Wen YH (2016) Could borophene be used as a promising anode material for high-performance li ion battery?. ACS Appl Mater Interfaces 8(34):22175–22181

  36. Zhang X, Hu J, Cheng Y, Yang HY, Yao Y, Yang SA (2016) Borophene as an extremely high capacity electrode material for li-ion and na-ion batteries. Nanoscale 8(33):15340-15347

  37. Perdew ARJP, Csonka GI (2008) Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. Phys Rev Lett 100(13):136406. https://doi.org/10.1103/PhysRevLett.100.136406

    Article  CAS  PubMed  Google Scholar 

  38. Laasonen K, Car R, Lee C, Vanderbilt D (1991) Implementation of ultrasoft pseudopotentials in ab initio molecular dynamics. Phys Rev B Condens Matter 43(8):6796–6799

  39. Monkhorst JDPHJ (1976) Special points for Brillouin-zone integrations. Phys Rev B 13(12):5188–5192. https://doi.org/10.1103/PhysRevB.13.5188

    Article  Google Scholar 

  40. H.N. Kunihiro Nobuhara, Masafumi Nose, Shinji Nakanishi, Hideki IBA, J Power Sources, 243 (2013) 585–587

  41. Lv X, Xu Z, Li J, Chen J, Liu Q (2016) Investigation of fluorine adsorption on nitrogen doped MgAl 2 O 4 surface by first-principles. Appl Surf Sci 376:97–104. https://doi.org/10.1016/j.apsusc.2016.03.108

    Article  CAS  Google Scholar 

  42. Liu M, Kutana A, Liu Y, Yakobson BI (2014) First-principles studies of li nucleation on graphene. J Physical Chemistry Letters 5(7):1225–1229. https://doi.org/10.1021/jz500199d

    Article  CAS  Google Scholar 

  43. Fan X, Zheng WT, Kuo JL, Singh DJ (2013) Adsorption of single Li and the formation of small Li clusters on graphene for the anode of lithium-ion batteries. ACS Appl Mater Interfaces 5(16):7793–7797. https://doi.org/10.1021/am401548c

    Article  CAS  PubMed  Google Scholar 

  44. Li Q-F, Duan C-G, Wan XG, Kuo J-L (2015) Theoretical prediction of anode materials in Li-ion batteries on layered black and blue phosphorus. J Phys Chem C 119(16):8662–8670. https://doi.org/10.1021/jp512411g

    Article  CAS  Google Scholar 

  45. Tritsaris GA, Kaxiras E, Meng S, Wang E (2013) Adsorption and diffusion of lithium on layered silicon for Li-ion storage. Nano Lett 13(5):2258–2263. https://doi.org/10.1021/nl400830u

    Article  CAS  PubMed  Google Scholar 

  46. Govind N, Petersen M, Fitzgerald G, King-Smith D, Andzelm J (2003) A generalized synchronous transit method for transition state location. Comput Mater Sci 28(2):250–258. https://doi.org/10.1016/S0927-0256(03)00111-3

    Article  CAS  Google Scholar 

  47. Zhang R, Wu X, Yang J (2016) Blockage of ultrafast and directional diffusion of li atoms on phosphorene with intrinsic defects. Nanoscale 8(7):4001–4006

  48. Komesu T, Le D, Zhang X, Ma Q, Schwier EF, Kojima Y, Zheng M, Iwasawa H, Shimada K, Taniguchi M, Bartels L, Rahman TS, Dowben PA (2014) Occupied and unoccupied electronic structure of Na doped MoS2(0001). 105(24):241602–1–241602–4

  49. Sascha Thinius MMI, Heitjans P, Bredow T (2014) J Phys Chem C 118:2273–2280

    Article  CAS  Google Scholar 

  50. Yazami RT, Reversible PA (1983) A reversible graphite-lithium negative electrode for electrochemical generators. J Power Sources 9(3):365–371. https://doi.org/10.1016/0378-7753(83)87040-2

    Article  CAS  Google Scholar 

  51. Jishi RA, Dresselhaus MS (1992) Superconductivity in graphite intercalation compounds. Phys Rev B 45(21):12465–12469. https://doi.org/10.1103/PhysRevB.45.12465

    Article  CAS  Google Scholar 

  52. Zhang H, Xia Y, Bu H, Wang X, Zhang M, Luo Y, Zhao M (2013) J Appl Phys 113:044309

    Article  CAS  Google Scholar 

  53. Xiao J, Choi D, Cosimbescu L, Koech P, Liu J, Lemmon JP (2010) Exfoliated MoS2 nanocomposite as an anode material for lithium ion batteries. Chem Mater 22(16):4522–4524. https://doi.org/10.1021/cm101254j

    Article  CAS  Google Scholar 

  54. Wan W, Zhang Q, Cui Y, Wang E (2010) J Physics. Condensed matter : an Institute of Physics journal 22(41):415501. https://doi.org/10.1088/0953-8984/22/41/415501

    Article  CAS  Google Scholar 

  55. Chen X, He J, Srivastava D, Li J (2012) Electrochemical cycling reversibility of LiMoS2 using first-principles calculations. 100(26):263901–1–263901–4

  56. Yafei Li DW, Zhou Z, Cabrera CR, Chen Z (2012) J Phys Chem Lett 3:2221–2227

    Article  CAS  PubMed  Google Scholar 

  57. Er D, Li J, Naguib M, Gogotsi Y, Shenoy VB (2014) ACS Appl Mater Interfaces 6(14):11173–11179. https://doi.org/10.1021/am501144q

    Article  CAS  PubMed  Google Scholar 

  58. Yi T-F, Xie Y, Zhu Y-R, Zhu R-S, Shen H (2013) Structural and thermodynamic stability of Li4Ti5O12 anode material for lithium-ion battery. J Power Sources 222:448–454. https://doi.org/10.1016/j.jpowsour.2012.09.020

    Article  CAS  Google Scholar 

  59. Zhao B, Ran R, Liu M, Shao Z (2015) A comprehensive review of Li4Ti5O12-based electrodes for lithium-ion batteries: the latest advancements and future perspectives. Materials Science and Engineering: R: Reports 98:1–71. https://doi.org/10.1016/j.mser.2015.10.001

    Article  Google Scholar 

  60. Zhang W-J (2011) A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J Power Sources 196(1):13–24. https://doi.org/10.1016/j.jpowsour.2010.07.020

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Kunming University of Science and Technology Analysis Test Fund (2017T20170001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Zhang, L. & Xu, L. Theoretical prediction of borophene monolayer as anode materials for high-performance lithium-ion batteries. Ionics 24, 1603–1615 (2018). https://doi.org/10.1007/s11581-017-2345-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2345-x

Keywords

Navigation