Skip to main content

Advertisement

Log in

Structure design and performance comparison of large-scale marine sediment microbial fuel cells in lab and real sea as power source to drive monitoring instruments for long-term work

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

An advanced large-scale frame of marine sediment microbial fuel cells (MSMFCs) is designed, and their electrochemical performance and driving instruments to work for long term are firstly compared in the lab and sea, respectively. Their open circuit voltages (OCV) reach 0.698 V (the MSMFC-lab, deployed in the lab) and 0.815 V (the MSMFC-sea, deployed in real sea), respectively. The output power of the MSMFC-sea (427 mW) is 1.14 times of the MSMFC-lab (375 mW). The TD (temperature-depth sensor, 6 V) powered by the MSMFC-sea can continuously operate for 17 months. The operation of the MSMFC-sea is not influenced by seawater temperature, keeping a stable output power (120 mW), which is much different from the MSMFC-lab. The TD powered by MSMFC-lab can only operate for 3 months, due to the low temperature in winter. To avoid the disturbance of benthonic animals in the top layer sediment on the seafloor, a special MSMFC-sea structure has been designed to embed its anode in inner depth. The mechanism of the differences between the two kinds of cells is primarily suggested, and it is firstly confirmed that the MSMFCs can be used as the continuous power source of the monitoring instruments on seafloor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Reference

  1. Logan BE, Hamelers B, Rozendal R, Schröder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40(17):5181–5192

    Article  CAS  Google Scholar 

  2. Franks AE, Nevin KP (2010) Microbial fuel cells, a current review. Energies 3(5):899–919

    Article  CAS  Google Scholar 

  3. Nastro RA, Falcucci G, Minutillo M, Jannelli E (2017) Microbial fuel cells in solid waste valorization: trends and applications. Model Trends Solid Hazard Waste Manag:159–171

  4. Reimers CE, Tender LM, Fertig S, Wang W (2001) Harvesting energy from the marine sediment−water interface. Environ Sci Technol 35(1):192–195

    Article  CAS  Google Scholar 

  5. Bond DR, Holmes DE, Tender LM, Lovley DR (2002) Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295(5554):483–485

    Article  CAS  Google Scholar 

  6. Lowy DA, Tender LM (2008) Harvesting energy from the marine sediment–water interface: III. Kinetic activity of quinone-and antimony-based anode materials. J Power Sources 185(1):70–75

    Article  CAS  Google Scholar 

  7. Fu YB, Liu ZH, Su G, Zai XR, Ying M, Yu J (2016) Modified carbon anode by MWCNTs/PANI used in marine sediment microbial fuel cell and its electrochemical performance. Fuel Cells 16(3):377–383

    Article  CAS  Google Scholar 

  8. Li WW, Yu HQ (2015) Stimulating sediment bioremediation with benthic microbial fuel cells. Biotechnol Adv 33(1):1–12

    Article  Google Scholar 

  9. Zhao Q, Li R, Ji M, Ren ZJ (2016) Organic content influences sediment microbial fuel cell performance and community structure. Bioresour Technol 220:549–556

    Article  CAS  Google Scholar 

  10. Fu Y, Xu Q, Zai X, Liu Y, Lu Z (2014) Low electrical potential anode modified with Fe/ferric oxide and its application in marine benthic microbial fuel cell with higher voltage and power output. Appl Surf Sci 289:472–477

    Article  CAS  Google Scholar 

  11. Wei J, Liang P, Huang X (2011) Recent progress in electrodes for microbial fuel cells. Bioresour Technol 102(20):9335–9344

    Article  CAS  Google Scholar 

  12. Fu Y, Zhao Z, Liu J, Li K, Xu Q, Zhang S (2011) Sulfonated polyaniline/vanadate composite as anode material and its electrochemical property in microbial fuel cells on ocean floor. Science China Chem 54(5):844–849

    Article  CAS  Google Scholar 

  13. Santoro C, Artyushkova K, Gajda I, Babanova S, Serov A, Atanassov P, Greenman J, Colombo A, Trasatti S, Ieropoulos I, Cristiani P (2015) Cathode materials for ceramic based microbial fuel cells (MFCs). Int J Hydrog Energy 40(42):14706–14715

    Article  CAS  Google Scholar 

  14. Santoro C, Soavi F, Serov A, Arbizzani C, Atanassov P (2016) Self-powered supercapacitive microbial fuel cell: the ultimate way of boosting and harvesting power. Biosens Bioelectron 78:229–235

    Article  CAS  Google Scholar 

  15. Santoro C, Serov A, Stariha L, Kodali M, Gordon J, Babanova S, Bretschger O, Artyushkova K, Atanassov P (2016) Iron based catalysts from novel low-cost organic precursors for enhanced oxygen reduction reaction in neutral media microbial fuel cells. Energy Environ Sci 9(7):2346–2353

    Article  CAS  Google Scholar 

  16. Santoro C, Serov A, Villarrubia CWN, Stariha S, Babanova S, Artyushkova K, Schuler AJ, Atanassov P (2015) High catalytic activity and pollutants resistivity using Fe-AAPyr cathode catalyst for microbial fuel cell application. Sci Rep 5:16596

    Article  Google Scholar 

  17. Zhang F, Tian L, He Z (2011) Powering a wireless temperature sensor using sediment microbial fuel cells with vertical arrangement of electrodes. J Power Sources 196(22):9568–9573

    Article  CAS  Google Scholar 

  18. Tender LM, Gray SA, Groveman E, Lowy DA, Kauffman P, Melhado J, Tycef RC, Flynnf D, Petrecca R, Dobarro J (2008) The first demonstration of a microbial fuel cell as a viable power supply: powering a meteorological buoy. J Power Sources 179(2):571–575

    Article  CAS  Google Scholar 

  19. Song TS, Yan ZS, Zhao ZW, Jiang HL (2011) Construction and operation of freshwater sediment microbial fuel cell for electricity generation. Bioprocess Biosyst Eng 34(5):621–627

    Article  CAS  Google Scholar 

  20. Schrader PS, Reimers CE, Girguis P, Delaney J, Doolan C, Wolf M, Green D (2016) Independent benthic microbial fuel cells powering sensors and acoustic communications with the MARS underwater observatory. J Atmos Ocean Technol 33(3):607–617

    Article  Google Scholar 

  21. He Z, Shao H, Angenent LT (2007) Increased power production from a sediment microbial fuel cell with a rotating cathode. Biosens Bioelectron 22(12):3252–3255

    Article  CAS  Google Scholar 

  22. Jannelli N, Nastro RA, Cigolotti V, Minutillo M, Falcucci G (2017) Low pH, high salinity: too much for microbial fuel cells? Appl Energy 192:543–550

    Article  CAS  Google Scholar 

  23. Jørgensen BB, Boetius A (2007) Feast and famine—microbial life in the deep-sea bed. Nat Rev Microbiol 5(10):770

    Article  Google Scholar 

  24. Yanagawa K, Morono Y, De Beer D, Haeckel M, Sunamura M, Futagami T, Hoshino T, Terada T, Nakamura K, Urabe T, Rehder G, Boetius A, Inagaki F (2013) Metabolically active microbial communities in marine sediment under high-CO2 and low-pH extremes. ISME J 7(3):555

    Article  CAS  Google Scholar 

  25. Sherafatmand M, Ng HY (2015) Using sediment microbial fuel cells (SMFCs) for bioremediation of polycyclic aromatic hydrocarbons (PAHs). Bioresour Technol 195:122–130

    Article  CAS  Google Scholar 

  26. Xia C, Xu M, Liu J, Guo J, Yang Y (2015) Sediment microbial fuel cell prefers to degrade organic chemicals with higher polarity. Bioresour Technol 190:420–423

    Article  CAS  Google Scholar 

  27. Donovan C, Dewan A, Peng H, Heo D, Beyenal H (2011) Power management system for a 2.5 W remote sensor powered by a sediment microbial fuel cell. J Power Sources 196(3):1171–1177

    Article  CAS  Google Scholar 

  28. Khaled F, Ondel O, Allard B (2016) Microbial fuel cells as power supply of a low-power temperature sensor. J Power Sources 306:354–360

    Article  CAS  Google Scholar 

  29. Scott K, Cotlarciuc I, Head I, Katuri KP, Hall D, Lakeman JB, Browning D (2008) Fuel cell power generation from marine sediments: investigation of cathode materials. J Chem Technol Biotechnol 83(9):1244–1254

    Article  CAS  Google Scholar 

  30. Fu Y, Yù J, Zhang Y, Meng Y (2014) Graphite coated with manganese oxide/multiwall carbon nanotubes composites as anodes in marine benthic microbial fuel cells. Appl Surf Sci 317:84–89

    Article  CAS  Google Scholar 

  31. Ming Y, ZhaoHui L, YangGuo Z, YuBin F (2015) Impact of exogenous additives on the performance of marine benthonic microbial fuel cells. Oceanologia et Limnologia Sinica/Hai Yang Yu Hu Zhao 46(3):489–496

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science and Technology Special Innovation Zone Project (17-H863-05-2T-002-040-001) and the Natural Science Founding of Shandong Province (ZR2015DM002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yubin Fu or Xuerong Zai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, C., Fu, Y., Zhang, H. et al. Structure design and performance comparison of large-scale marine sediment microbial fuel cells in lab and real sea as power source to drive monitoring instruments for long-term work. Ionics 24, 797–805 (2018). https://doi.org/10.1007/s11581-017-2251-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2251-2

Keywords

Navigation