Skip to main content

Advertisement

Log in

Performance of E. conferta and G. atroviridis fruit extracts as sensitizers in dye-sensitized solar cells (DSSCs)

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Natural dyes extracted from Eleiodoxa conferta and Garcinia atroviridis were used for the first time as photosensitizers in dye-sensitized solar cells (DSSCs). Anthocyanin was identified as the main pigments that sensitize the semiconductor of TiO2 film. Anthocyanin pigment contains hydroxyl and carboxylic groups in the molecule that can attach effectively to the surface of TiO2 film. The optical characteristics of the extracted dye and photovoltaic performance of the cells were studied. The extracts showed UV–vis absorptions in the range of 530–560 nm with broad maxima absorption at ~ 430 nm. FTIR spectra of extraction revealed the presence of anchoring groups. For E. conferta, the photovoltaic performance of the sample with 3.16-μm-thick TiO2 produced the best results with open-circuit voltage (VOC), short-circuit current density (JSC), fill factor (FF), and energy conversion efficiency (ɳ) values of 0.37 V, 6.56 mA/cm2, 0.49, and 1.18%, respectively. The best photovoltaic performance for G. atroviridis was also obtained from the sample with 3.16-μm-thick TiO2 with VOC, JSC, FF, and ɳ values of 0.35 V, 3.74 mA/cm2, 0.65, and 0.85%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wang Y (2009) Recent research progress on polymer electrolytes for dye-sensitized solar cells. Sol Energy Mater Sol Cells 93:1167–1175. doi:10.1016/j.solmat.2009.01.009

    Article  CAS  Google Scholar 

  2. Cheng X, Liang M, Sun S, Shi Y, Ma Z, Sun Z, Xue S (2012) Synthesis and photovoltaic properties of organic sensitizers containing electron-deficient and electron-rich fused thiophene for dye-sensitized solar cells. Tetrahedron 68:5375–5385. doi:10.1016/j.tet.2012.04.113

    Article  CAS  Google Scholar 

  3. Kim HJ, Kim DE (2012) Effect of surface roughness of top cover layer on the efficiency of dye-sensitized solar cell. Sol Energy 86:2049–2055. doi:10.1016/j.solener.2012.04.007

    Article  CAS  Google Scholar 

  4. Hao S, Wu J, Huang Y, Lin J (2006) Natural dyes as photosensitizers for dye-sensitized solar cell. Sol Energy Mater Sol Cells 80:209–214. doi:10.1016/j.solener.2005.05.009

    CAS  Google Scholar 

  5. Hamadanian M, Safaei-Ghomi J, Hosseinpour M, Masoomi R, Jabbari V (2014) Uses of new natural dye photosensitizers in fabrication of high potential dye-sensitized solar cells (DSSCs). Mater Sci Semicond Process 27:733–739. doi:10.1016/j.mssp.2014.08.017

    Article  CAS  Google Scholar 

  6. Isah KU, Ahmadu U, Idris A, Kimpa MI, Uno UE, Ndamitso MM, Alu N (2015) Betalain pigments as natural photosensitizers for dye-sensitized solar cells: the effect of dye pH on the photoelectric parameters. Mater Renew Sustain Energy 4:39. doi:10.1007/s40243-014- 0039-0

    Article  Google Scholar 

  7. Zhou H, Wu L, Gao Y, Ma T (2011) Dye-sensitized solar cell using 20 natural dyes as sensitizers. Photochem Photobiol A Chem 219:188–194 doi.org/10.1016/j.jpotochem.2011.02.008

    Article  CAS  Google Scholar 

  8. Shahid M, Shahid-ul-Islam MF (2013) Recent advancements in natural dye applications: a review. J Clean Prod 53:310–331. doi:10.1016/j.jclepro.2013.03.031

    Article  CAS  Google Scholar 

  9. Calogero G, Bartolotta A, DI Marco G, Di Carlo A, Bonaccorso F (2015) Vegetable-based dye-sensitized solar cells. Chem Soc Rev 44:3244–3294. doi:10.1039/c4cs00309h

    Article  CAS  Google Scholar 

  10. Kay A, Gratzel M (1993) Artificial photosynthesis. 1. Photosensitization of titania solar cells with chlorophyll derivatives and related natural porphyrins. J Phys Chem 97:6272–6277. doi:10.1021/j100125a029

    Article  CAS  Google Scholar 

  11. Calogero G, Yum JH, Sinopoli A, DI Marco G, Gratzel M (2021) Anthocyanins and betalains as light-harvesting pigments for dye-sensitized solar cells. Sol Energy 86:1563–1575. doi:10.1016/j.solener.2012.02.018

    Article  Google Scholar 

  12. Shanmugam V, Manoharan S, Anandan S (2013) Performance of dye-sensitized solar cells fabricated with extracts from fruits of ivy gourd and flowers of red frangipani as sensitizers. Spectrochim Acta Mol Biomol Spectrosc 104:35–40. doi:10.1016/j.saa.2012.11.098

    Article  CAS  Google Scholar 

  13. Wongcharee K, Meeyoo V, Chavadej S (2007) Dye-sensitized solar cell using natural dyes extracted from rosella and blue pea flowers. Sol Energ Mat Sol Cells 91:566–571. doi:10.1016/j.solmat.2006.11.005

    Article  CAS  Google Scholar 

  14. Mary Rosana NT, Amarnath JD, Vincent Joseph KL, Suresh A, Anandan S, Saritha G (2014) Natural sensitizers for dye sensitized solar cell applications. Int J Chem Tech Res 6:5022–5026

    Google Scholar 

  15. Szostak R, de Souza ECF, Antunes SRM, Borges CPF, Andrade A, Rodrirues P, Antunes A (2015) Anthocyanin from Vitis labrusca grape used as sensitizer in DSSC solar cells. J Mater Sci Mater Electron 26:2257–2262. doi:10.1007/s10854-015-2678-z

    Article  CAS  Google Scholar 

  16. Raghvendra SV, Shakya A, Hedaytullah M, Arya GS, Mishra A, Grupta AD, Pachpute AP, Patel D (2011) Chemical and potential aspects of anthocyanins-a water-soluble vacuolar flavonoid pigments: a review. Int J Pharm Sci Rev Res 6:28–33

    CAS  Google Scholar 

  17. Sakata K, Saito N, Honda T (2006) Ab initio study of molecular structures and excited states in anthocyanidins. Tetrahedron 62:3721–3731. doi:10.1016/j.tet.2006.01.081

    Article  CAS  Google Scholar 

  18. Calogero G, Citro I, DI Marco G, Minicante SA, Morabito M, Genovese G (2014) Brown seaweed pigment as a dye source for photoelectrochemical solar cells. Spectrochim Acta A 117:702–706. doi:10.1016/j.saa.2013.09.019

    Article  CAS  Google Scholar 

  19. Ramamoorthy R, Radha N, Maheswari G (2016) Betalain and anthocyanin dye-sensitized solar cells. J Appl Electrochem 46:929–941. doi:10.1007/s10800-016-0974-9

    Article  CAS  Google Scholar 

  20. Hemalatha KV, Karthick SN, Justin Raj C, Hong NY, Kim SK, Kim HJ (2012) Performance of Kerria japonica and Rosa chinensis flower dyes as sensitizers for dye sensitized solar cells. Spectrochim Acta Mol Biomol Spectrosc 96:305–309. doi:10.1016/j.saa.2012.05.027

    Article  CAS  Google Scholar 

  21. Kimura Y, Maeda T, Iuchi S, Koga N, Murata Y, Wakamiya A, Yoshida K (2017) Characterization of dye-sensitized solar cells using five pure anthocyanidin 3-O-glucosides possessing different chromophores. J Photochem Photobiol A Chem 335:230–238. doi:10.1016/j.jphotochem.2016.12.005

    Article  CAS  Google Scholar 

  22. Maurya IC, Neetu GAK (2016) Natural dye extracted from Saraca asoca flowers as sensitizer for TiO2-based dye-sensitized solar cell. J Sol Energy Eng 138:1–6. doi:10.1115/1.4034028

    Article  Google Scholar 

  23. Maurya IC, Neetu, Gupta AK (2016) Callindra haematocephata and Peltophorum pterocarpum flowers as natural sensitizers for TiO2 thin film based dye-sensitized solar cells. Opt Mater 60:270–276. doi:10.1016/j.optmat.2016.07.041

    Article  CAS  Google Scholar 

  24. Lim A, Kumara NT, Tan AL, Mirza AH, Chandrakanthi RL, Petra MI, Ming LC, Senadeera GK, Ekanayake P (2015) Potential natural sensitizers extracted from the skin of Canarium odontophyllum fruits for dye-sensitized solar cells. Spectrochim Acta A 138:596–602. doi:10.1016/j.saa.2014.11.102

    Article  CAS  Google Scholar 

  25. Zhou H, Wu L, Gao Y, Ma T (2011) Dye-sensitized solar cells using 20 natural dyes as sensitizers. J Photochem Photobiol A 219:188–194. doi:10.1016/j.jphotochem.2011.02.008

    Article  CAS  Google Scholar 

  26. Hao S, Wu J, Huang Y, Lin J (2006) Natural dyes as photosensitizers for dye-sensitized solar cell. Sol Energy 80:209–214. doi:10.1016/j.solener.2005.05.009

    Article  CAS  Google Scholar 

  27. Fernando JMRV, Senadeera GKR (2008) Natural anthocyanins as photosensitizers for dye-sensitized solar devices. Curr Sci 95:663–666

    CAS  Google Scholar 

  28. Ghann W, Kang H, Sheikh T, Yadav S, Chavez-Gil T, Nesbitt F, Uddin J (2017) Fabrication, optimization and characterization of natural dye sensitized solar cell. Sci Rep 7:41470. doi:10.1038/srep41470

    Article  CAS  Google Scholar 

  29. Hosseinnezhad M, Moradian S, Gharanjig K (2015) Fruit extract dyes as photosensitizers in solar cells. Curr Sci 109:954–956. doi:10.18520/v109/i5/953-956

    Article  Google Scholar 

  30. Dumbrava A, Georgescu A, Badea G, Enache I, Orrea C, Girtu MA (2008) Dye sensitized solar cells based on nanocrystalline TiO2 and natural pigments. J Optoelectron Adv Mater 10:2996–3002

    CAS  Google Scholar 

  31. Chien CY, Hsu BD (2013) Optimization of the dye-sensitized solar cell with anthocyanin as photosensitizer. Sol Energy 98:203–211. doi:10.1016/j.solener.2013.09.035

    Article  CAS  Google Scholar 

  32. Chang H, Lo YJ (2010) Pomegranate leaves and mulberry fruit as natural sensitizers for dye-sensitized solar cells. Sol Energy 84:1833–1837. doi:10.1016/j.solener.2010.07.009

    Article  CAS  Google Scholar 

  33. Aduloju KA, Mohamed BS, Simiyu J (2011) Effect of extracting solvents on the stability and performances of dye-sensitized solar cell prepared using extract from Lawsonia inermis. Fundam J Mod Phys 1:261–268

    Google Scholar 

  34. Tekerek S, Kudret A, Alver U (2011) Dye-sensitized solar cells fabricated with black raspberry, black carrot and rosella juice. Indian J Phys 85:1469–1476. doi:10.1007/s12648-011-0166-8

    Article  CAS  Google Scholar 

  35. Mokhtar SI, Aziz NA (2015) Organic acid content and antimicrobial properties of Eleiodoxa conferta extracts at different maturity stages. J Trop Resour Sustain Sci 3:72–76

    Google Scholar 

  36. Calogero G, DI Marco G, Cazzanti S, Caramori S, Argazzi R, Carlo AD, Bignozzi CA (2010) Efficient dye-sensitized solar cells using red turnip and purple wild Sicilian prickly pear fruits. Int J Mol Sci 11:254–267. doi:10.3390/ijms11010254

    Article  CAS  Google Scholar 

  37. Jaafar H, Ahmad ZA, Ain MF (2017) Effect of Nb-doped TiO2 photoanode using solid state method with E. conferta as sensitizer on the performance of dye sensitized solar cell. Optik 144:91–101. doi:10.1016/j.ijleo.2017.06.097

    Article  CAS  Google Scholar 

  38. Li B, Wang X, Yan M, Li L (2002) Preparation and characterization of nano-TiO2 powder. MaterChemPhys 78:184–188

    CAS  Google Scholar 

  39. Mozaffari SA, Saeidi M, Rahmanian R (2015) Photoelectric characterization of fabricated dye sensitized solar cell using dye extracted from red Siahkooti fruit as natural sensitizer. Spectrochim Acta Mol Biomol Spectrosc 142:226–231. doi:10.1016/j.saa.2015.02.003

    Article  CAS  Google Scholar 

  40. Ananth S, Vivek P, Saravana Kumar G, Murugakoothan P (2015) Performance of Caesalpinia sappan heartwood extract as photo sensitizer for dye sensitized solar cells. Spectrochim Acta Mol Biomol Spectrosc 137:345–350. doi:10.1016/j.saa.2014.08.083

    Article  CAS  Google Scholar 

  41. Harborne JB, Geissman TA (1956) Anthochlor pigments. XII. Maritimein and marein. J Am Chem Soc 78:829–832

    Article  CAS  Google Scholar 

  42. Tripathi M, Chawla P (2015) CeO2-TiO2 photoanode for solid state natural dye-sensitized solar cell. Ionics 21:541–546. doi:10.1007/s11581-014-1172-6

    Article  CAS  Google Scholar 

  43. Su H, Huang YT, Chang YH (2015) The synthesis of Nb-doped TiO2 nanoparticles for improved-performance dye sensitized solar cells. Electrochim Acta 182:230–237. doi:10.1016/j.electacta.2015.09.072

    Article  CAS  Google Scholar 

  44. Baglio V, Girolam M, Antonucci V (2011) Influence of TiO2 film thickness on the electrochemical behaviour of dye-sensitized solar cells. Int J Electrochem Sci 6:3375–3384

    CAS  Google Scholar 

  45. D'Souza LP, Shwetharani R, Amoli V, Fernando CAN, Sinha AK, Balakrishna RG (2016) Photoexcitation of neodymium doped TiO2 for improved performance in dye-sensitized solar cells. Mater Des 104:346–354. doi:10.1016/j.matdes.2016.05.007

    Article  Google Scholar 

  46. Fitra M, Daut I, Irwanto M (2013) Effect of TiO2 thickness dye solar cell on charge generation. Energy Procedia 36:278–286. doi:10.1016/j.egypro.2013.07.032

    Article  CAS  Google Scholar 

  47. Singh LK, Karlo T, Pandey A (2014) Performance of fruit extract of Melastoma malabathricum L. as sensitizer in DSSCs. Spectrochim Acta Mol Biomol Spectrosc 118:938–943. doi:10.1016/j.saa.2013.09.075

    Article  CAS  Google Scholar 

  48. Zhang D, Lanier SM, Downing JA (2008) Betalain, pigments for dye-sensitized solar cells. J Photochem Photobiol A Chem 195:72–80. doi:10.1016/j.jphotochem.2007.07.038

    Article  CAS  Google Scholar 

  49. Narayan MR (2012) Review: dye sensitized solar cells based on natural photosensitizers, renew. Sustainable Energy Rev 16:208–215. doi:10.1016/j.rser.2011.07.148

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by fundamental research grant scheme (FRGS) under grant number of 203/PBAHAN/6071263.

Conflict of interest

No conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zainal Arifin Ahmad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaafar, H., Ain, M.F. & Ahmad, Z.A. Performance of E. conferta and G. atroviridis fruit extracts as sensitizers in dye-sensitized solar cells (DSSCs). Ionics 24, 891–899 (2018). https://doi.org/10.1007/s11581-017-2244-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2244-1

Keywords

Navigation