Skip to main content

Advertisement

Log in

Synthesis of core-shell carbon sphere@nickel oxide composites and their application for supercapacitors

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Herein, core-shell carbon sphere@nickel oxide (Cs@NiO) composites were fabricated by a facile hydrothermal method followed by calcination. The resultant Cs@NiO composites are composed of randomly distributed NiO nanoneedles coated on carbon sphere surfaces, which exhibit the rambutan-like structure. As electrode materials for supercapacitor, the core-shell Cs@NiO delivers a high specific capacitance of 555 F/g at the current density of 1 A/g, and an outstanding rate capability of about 85.6% capacity retention from 1 to 10 A/g. Meanwhile, the capacitance degradation is only 5% after 1000 continuous charge-discharge cycles with a current density of 10 A/g. These excellent electrochemical performances can be attributed to the enhanced electronic conductivity, the improved surface activity and the facilitated charge transportation during charging and discharging process, which are caused by the introduction of carbon sphere and the appropriate structure, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Westover AS, Tian JW, Bernath S, Oakes L, Edwards R, Shabab FN, Chatterjee S, Anilkumar AV, Pint CL (2014) A multifunctional load-bearing solid-state supercapacitor. Nano Lett 14:3197–3202

    Article  CAS  Google Scholar 

  2. Wang R, Xu C, Lee JM (2016) High performance asymmetric supercapacitors: New NiOOH nanosheet/graphene hydrogels and pure graphene hydrogels. Nano Energy 19:210–221

    Article  CAS  Google Scholar 

  3. Wang XF, Yin YJ, Hao CL, You Z (2015) A high-performance three-dimensional micro supercapacitor based on ripple-like ruthenium oxide-carbon nanotube composite films. Carbon 82:436–445

    Article  CAS  Google Scholar 

  4. Gao Z, Yang W, Wang J, Song N, Li X (2015) Flexible all-solid-state hierarchical NiCo2O4/porous graphene paper asymmetric supercapacitors with an exceptional combination of electrochemical properties. Nano Energy 13:306–317

    Article  CAS  Google Scholar 

  5. Zhu YG, Wang Y, Shi YM, Wong JI, Yang HY (2014) CoO nanoflowers woven by CNT network for high energy density flexible micro-supercapacitor. Nano Energy 3:46–54

    Article  CAS  Google Scholar 

  6. Teng S, Siegel G, Wang W, Tiwariz A (2014) Carbonized wood for supercapacitor electrodes. ECS Solid State Lett 3:M25–M28

    Article  CAS  Google Scholar 

  7. Zhao YQ, Lu M, Tao PY, Zhang YJ, Gong XT, Yang Z, Zhan g GQ, Li HL (2016) Hierarchically porous and heteroatom doped carbon derived from tobacco rods for supercapacitors. J Power Sources 307:391-400.

  8. Zhang Y, Wang J, Wei H, Hao J, Mu J, Cao P, Wang J, Zhao S (2016) Hydrothermal synthesis of hierarchical mesoporous NiO nanourchins and their supercapacitor application. Mater Lett 162:67–70

    Article  CAS  Google Scholar 

  9. Han D, Xu P, Jing X, Wang J, Yang P, Shen Q, Liu J, Song D, Gao Z, Zhang M (2013) Trisodium citrate assisted synthesis of hierarchical NiO nanospheres with improved supercapacitor performance. J Power Sources 235:45–53

    Article  CAS  Google Scholar 

  10. Cao F, Pan GX, Xia XH, Tang PS, Chen HF (2014) Synthesis of hierarchical porous NiO nanotube arrays for supercapacitor application. J Power Sources 264:161–167

    Article  CAS  Google Scholar 

  11. Han D, Xu P, Jing X, Wang J, Song D, Liu J, Zhang M (2013) Facile approach to prepare hollow core–shell NiO microspherers for supercapacitor electrodes. J Solid State Chem 203:60–67

    Article  CAS  Google Scholar 

  12. Li Q, Liang CL, Lu XF, Tong YX, Li GR (2015) Ni@NiO core-shell nanoparticle tube arrays with enhanced supercapacitor performance. J Mater Chem A 3:6432–6439

    Article  CAS  Google Scholar 

  13. Zhao B, Zhuang H, Fang T, Jiao Z, Liu R, Ling X, Lu B, Jiang Y (2014) Selfassembly of NiO/graphene with three-dimension hierarchical structure as high performance electrode material for supercapacitors. J Alloy Compound 597:291–298

    Article  CAS  Google Scholar 

  14. Yi H, Wang HW, Jing YT, Peng TQ, Wang XF (2015) Asymmetric supercapacitors based on carbon nanotubes@NiO ultrathin nanosheets core-shell composites and MOF-derived porous carbon polyhedrons with super-long cycle life. J Power Sources 285:281–290

    Article  CAS  Google Scholar 

  15. Pan Y, Mei Z, Yang Z, Zhang W, Pei B, Yao H (2014) Facile synthesis of mesoporous MnO2/C spheres for supercapacitor electrodes. Chem Eng J 242:397–403

    Article  CAS  Google Scholar 

  16. Zhang S, Hu R, Dai P, Yu X, Ding Z, Wu M, Li G, Ma Y, Tu C (2017) Synthesis of rambutan-like MoS2/mesoporous carbon spheres nanocomposites with excellent performance for supercapacitors. Appl Surf Sci 396:994–999

    Article  CAS  Google Scholar 

  17. Tang S, Tang Y, Vongehr S, Zhao X, Meng X (2009) Nanoporous carbon spheres and their application in dispersing silver nanoparticles. Appl Surf Sci 255:6011–6016

    Article  CAS  Google Scholar 

  18. Jahromi SP, Pandikumar A, Goh BT, Lim YS, Basirun WJ, Lim HN, Huang NM (2015) Influence of particle size on performance of a nickel oxide nanoparticlebased supercapacitor. RSC Adv 5:14010–14019

    Article  Google Scholar 

  19. Zhang J, Zeng D, Zhao S, Wu J, Xu K, Zhu Q, Zhang G, Xie C (2015) Room temperature NO2 sensing: what advantage does the rGO-NiO nanocomposite have over pristine NiO? Phys Chem Chem Phys 17:14903–14911

    Article  CAS  Google Scholar 

  20. Zhang H, Guo D, Zhu J, Li Q, Chen L, Wang T (2015) A layer-by-layer deposition strategy of fabricating NiO@rGO composites for advanced electrochemical capacitors. Electrochim Acta 152:378–382

    Article  CAS  Google Scholar 

  21. Zang L, Zhu JY, Xia YC (2014) Facile synthesis of porous NiO nanofibers for high-performance supercapacitors. J Mater Eng Perform 23:679–683

    Article  CAS  Google Scholar 

  22. Zhang H, Kuila T, Kim NH, Yu DS, Lee JH (2014) Simultaneous reduction, exfoliation, and nitrogen doping of graphene oxide via a hydrothermal reaction for energy storage electrode materials. Carbon 69:66–78

    Article  Google Scholar 

  23. Zhu YQ, Guo HZ, Wu Y, Cao CB, Tao S, Wu ZY (2014) Surface-enabled superior lithium storage of high-quality ultrathin NiO nanosheets. J Mater Chem A 2:7904–7911

    Article  CAS  Google Scholar 

  24. Chen G, Guan H, Dong CJ, Xiao XC, Wang YD (2016) Effect of calcination temperatures on the electrochemical performances of nickel oxide/reduction graphene oxide (NiO/RGO) composites synthesized by hydrothermal method. J Phys Chem Solids 98:209–219

    Article  CAS  Google Scholar 

  25. Yao M, Hu Z. Xu Z, Liu Y, Liu P, Zhang Q (2015) Template synthesis and characterization of nanostructured hierarchical mesoporous ribbon-like NiO as high performance electrode material for supercapacitor. Electrochim Acta 158:96-104.

  26. Deng P, Zhang H, Chen Y, Li Z, Huang Z, Xu X, Li Y, Shi Z (2015) Facile fabrication of graphene/nickel oxide composite with superior supercapacitance performance by using alcohols-reduced graphene as substrate. J Alloy Compound 644:165–171

    Article  CAS  Google Scholar 

  27. Feng X, Zhou J, Wang L, Li Y, Huang Z, Chen S, Ma Y, Wang L, Yan X (2015) Synthesis of shape-controlled NiO-graphene nanocomposites with enhanced supercapacitive properties. New J Chem 39:4026–4034

    Article  CAS  Google Scholar 

  28. Liu W, Lu C, Wang X, Liang K, Tay BK (2015) In situ fabrication of threedimensional, ultrathin graphitae/carbon nanotube/NiO composite as binder-free electrode for high-performance energy storage. J Mater Chem A 3:624–633

    Article  CAS  Google Scholar 

  29. Lu XF, Lin J, Huang ZX, Li GR (2015) Three-dimensional nickel oxide@carbon hollow hybrid networks with enhanced performance for electrochemical energy storage. Electrochim Acta 161:236–244

    Article  CAS  Google Scholar 

  30. Madhu R, Veeramani V, Chen SM, Veerakumar P, Liu SB (2015) Functional porous carbon/nickel oxide nanocomposites as binder-free electrodes for supercapacitors. Chem Eur J 21:8200–8206

    Article  CAS  Google Scholar 

  31. Wang X, Wang X, Yi L, Liu L, Dai Y, Wu H (2013) Preparation and capacitive properties of the core–shell structure carbon aerogel microbeads-nanowhiskerlike NiO composites. J Power Sources 224:317–323

    Article  CAS  Google Scholar 

  32. Zeng W, Zhang GH, Hou SC, Wang TH, Duan HG (2015) Facile synthesis of graphene@NiO/MoO3 composite nanosheet arrays for high-performance supercapacitors. Electrochim Acta 151:510–516

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Application Basic Research Fund of Yunnan Province (grant no. 2014FB110) and the National Natural Science Foundation of China (grant nos. 11564042 and 11464049).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yude Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G., Guan, H., Dong, C. et al. Synthesis of core-shell carbon sphere@nickel oxide composites and their application for supercapacitors. Ionics 24, 513–521 (2018). https://doi.org/10.1007/s11581-017-2204-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2204-9

Keywords

Navigation