Skip to main content
Log in

Molecular engineering of the electronic, structural, and electrochemical properties of nanostructured 1-methyl-4-phenyl 1,2,4 triazolium-based [PhMTZ][X1–10] ionic liquids through anionic changing

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In the present work, molecular engineering of the physicochemical characteristics of ion pairing in 1-methyl-4-phenyl 1,2,4 triazolium-based ionic liquids [PhMTZ][X] (X1–10 = CH3CO2 , Cl, NO3 , CF3CO2 , BF4 , ClO4 , N(CN)2 , PF6 , NTf2 , and C(CN)3 ) are explored using at M06-2X/6–311++G(d,p) level. The binding Gibbs free energy of ion pairs are reevaluated using ab initio MP2 method and dispersion corrected M06-2X-D3, B2PLYP, B2PLYP-D, and mPW2PLYP-D functionals. Comparison of Gibbs free bottom electrodes (BEs) calculated by B2PLYP and B2PLYP-D functionals reveals that the contribution of dispersion energy to the total BEs vary from 9% for X1 to 17% for X = 10. Besides, the range of the dispersion contribution estimated by M06-2X-D3 functional is found to be 0.6% for X2 to 5% for X3. The Gibbs free BEs in solvent media, Gibbs free energy and enthalpy of formation, electrochemical windows, anodic and cathodic stability, volumetric and electron density properties, charge transfer values, and electrostatic maps are evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Shamsi SH, Danielson ND (2007) Utility of ionic liquids in analytical separations. J Sep Sci 30:1729–1750

    Article  CAS  Google Scholar 

  2. Earle MJ, Esperanca J, Gilea MA, Lopes JNC, Rebelo LPN, Magee JW, Seddon KR, Widegren JA (2006) The distillation and volatility of ionic liquids. Nature 439:831–834

    Article  CAS  Google Scholar 

  3. Wasserscheid P (2006) Chemistry: Volatile times for ionic liquids. Nature 439:797–797

    Article  CAS  Google Scholar 

  4. Endres F, Zein El Abedin S (2006) Air and water stable ionic liquids in physical chemistry. Phys Chem Chem Phys 8:2101–2116

    Article  CAS  Google Scholar 

  5. Wassercheid P, Keim W (2000) Ionic liquids—new “solutions” for transition metal catalysis. Angew Chem Int Ed 39:3772–3789

    Article  Google Scholar 

  6. Klapötke TM, Petermayer CD, Piercey GJ, Stierstorfer J (2012) The 1,3-bis(nitroimide)-1,2,3-triazolate anion, the N-nitroimide moiety, and the strategy of alternating positive and negative charges in the design of energetic materials. J Am Chem Soc 134:20827–20836

    Article  CAS  Google Scholar 

  7. Joo YH, Shreeve JM (2009) Energetic mono-, di-, and trisubstituted nitroiminotetrazoles. Angew Chem 48:572–575

    Article  Google Scholar 

  8. Thottempudi V, Shreeve JM (2011) Synthesis and promising properties of a new family of high-density energetic salts of 5-nitro-3-trinitromethyl-1H-1,2,4-triazole and 5,50-bis(trinitromethyl)-3,30-azo-1H-1,2,4-triazole. J Am Chem Soc 133:19982–19992

    Article  CAS  Google Scholar 

  9. Joo YH, Shreeve JM (2010) High-density energetic mono- or bis(oxy)-5-nitroiminotetrazoles. Angew Chem Int Ed 49:7320–7323

    Article  CAS  Google Scholar 

  10. Joo YH, Shreeve JM (2010) Nitroimino-tetrazolates and oxy-nitroimino-tetrazolates. J Am Chem Soc 132:15081–15090

    Article  CAS  Google Scholar 

  11. Klapötke TM, Stierstorfer J (2008) The CN7 anion. J Am Chem Soc 131:1122–1134

    Article  CAS  Google Scholar 

  12. Wang R, Xu H, Guo Y, Sa R, Shreeve JM (2010) Bis[3-(5-nitroimino-1,2,4-triazolate)]-based energetic salts: synthesis and promising properties of a new family of high-density insensitive materials. J Am Chem Soc 132:11904–11905

    Article  CAS  Google Scholar 

  13. Zhang Q, Shreeve JM (2013) Ionic liquid propellants: Future fuels for space propulsion. J M Chem Eur 19:15446–15451

    Article  CAS  Google Scholar 

  14. Sebastiao E, Cook C, Hu A, Murugesu M (2014) Recent developments in the field of energetic ionic liquids. J Mater Chem A 2:8153–8173

    Article  CAS  Google Scholar 

  15. Zhang Q, Shreeve JM (2014) Energetic ionic liquids as explosives and propellant fuels: a new journey of ionic liquid chemistry. Chem Rev 114:10527–10574

    Article  CAS  Google Scholar 

  16. Izgorodina EI, Seeger ZL, Scarborough DLA, Tan SYS (2017) Quantum chemical methods for the prediction of energetic, physical, and spectroscopic properties of ionic liquids. Chem Rev 117(10):6696–6754 and references therein

    Article  CAS  Google Scholar 

  17. Kermanioryani M, Mutalib MIA, Dong Y, Lethesh KC, Ben Ghanem OBO, Kurnia KA, Leveque JM (2016) Physicochemical properties of new imidazolium-based ionic liquids containing aromatic group. J Chem Eng Data 61:2020–2026

    Article  CAS  Google Scholar 

  18. Ben Ghanem O, Mutalib MA, Lévêque JM, Gonfa G, Kait CF, El-Harbawi M (2015) Studies on the physicochemical properties of ionic liquids based on 1-octyl-3-methylimidazolium amino acids. J Chem Eng Data 60:1756–1763

    Article  CAS  Google Scholar 

  19. Fang DW, Yan Q, Li D, Xia LX, Zang SL (2014) Estimation of physicochemical properties of 1-alkyl-3-methylimidazolium glutamate. J Chem Therm 79:12–18

    Article  CAS  Google Scholar 

  20. Wei Y, Jin Y, Wu ZJ, Yang Y, Zhang QG, Kang ZH (2013) Synthesis and physicochemical properties of amino acid ionic liquid 1-butyl-3-methylimidazolium aspartate and binary mixture with methanol. J Chem Eng Data 58:349–356

    Article  CAS  Google Scholar 

  21. Giełdoń A, Bobrowski M, Bielicka-Giełdoń A, Czaplewski C (2016) Theoretical calculation of the physico-chemical properties of 1-butyl-4-methylpyridinium based ionic liquids. J Mol Liq 225:467–474

    Article  CAS  Google Scholar 

  22. Ounissi A, Benguerba Y, Ouddai N (2016) Theoretical investigation on structural and physicochemical properties of some ionic liquids. Computational and Theoretical Chemistry 1092:68–73

    Article  CAS  Google Scholar 

  23. Bahadur I, Kgomotso M, Ebenso EE, Redhi G (2016) Influence of temperature on molecular interactions of imidazolium-based ionic liquids with acetophenone: thermodynamic properties and quantum chemical studies. RSC Adv 6:104708–104723

    Article  CAS  Google Scholar 

  24. Zhang Q, Lan Y, Liu H, Zhang X, Zhang X, Wei Y (2016) Estimation and structural effect on physicochemical properties of alkylimidazolium-based ionic liquids with different anions. J Chem Eng Data 61:2002–2012

    Article  CAS  Google Scholar 

  25. Liu X, Su Z, Ji W, Chen S, Wei Q, Xie G, Yang X, Gao S (2014) Structure, physicochemical properties, and density functional theory calculation of high-energy-density materials constructed with intermolecular interaction: nitro group charge determines sensitivity. J Phys Chem C 118:23487–23498

    Article  CAS  Google Scholar 

  26. Dong LL, He L, Liu HY, Tao GH, Nie FD, Huang M, Hu CW (2013) Nitrogen-rich energetic ionic liquids based on the N, N-bis (1H-tetrazol-5-yl) amine anion–syntheses, structures, and properties. Eur J Inorg Chem 28:5009–5019

    Google Scholar 

  27. De La Hoz AT, Brauer UG, Miller KM (2014) Physicochemical and thermal properties for a series of 1-alkyl-4-methyl-1, 2, 4-triazolium bis (trifluoromethylsulfonyl) imide ionic liquids. J Phys Chem B 118:9944–9951

    Article  CAS  Google Scholar 

  28. Wu JT, Zhang JG, Yin X, Wu L (2016) Energetic salts based on 3-hydrazino-4-amino-1, 2, 4-triazole (HATr): synthesis and properties. New J Chem 40:5414–5419

    Article  CAS  Google Scholar 

  29. Brauer UG, Andreah T, Miller KM (2015) The effect of counteranion on the physicochemical and thermal properties of 4-methyl-1-propyl-1,2,4-triazolium ionic liquids. J Mol Liq 210:286–292

    Article  CAS  Google Scholar 

  30. Singh D, Gardas RL (2016) Influence of cation size on the Ionicity, fluidity and physiochemical properties of 1,2,4-triazolium based ionic liquids. J Phys Chem B 120:4834–4842

    Article  CAS  Google Scholar 

  31. Watkins JD, Roth EA, Lartey M, Albenze E, Zhong M, Luebke DR, Nulwala HB (2015) Ionic liquid regioisomers: structure effect on the thermal and physical properties. New J Chem 39:1563–1566

    Article  CAS  Google Scholar 

  32. Lartey M, Meyer-Ilse J, Watkins JD, Roth EA, Bowser S, Kusuma VA, Damodaran K, Zhou X, Haranczyk M, Albenze E, Luebke DR, Hopkinson D, Kortright JB, Nulwala HB (2015) Branched isomeric 1,2,3-triazolium-based ionic liquids: new insight into structure–property relationships. Phys Chem Chem Phys 17:29834–29843

    Article  CAS  Google Scholar 

  33. Yan F, Lartey M, Jariwala K, Bowser S, Damodaran K, Albenze E, Luebke DR, Nulwala HB, Smit B, Haranczyk M (2014) Toward a materials genome approach for ionic liquids: synthesis guided by ab initio property maps. J Phys Chem B 118(47):13609–13620

    Article  CAS  Google Scholar 

  34. Osada I, de Vries H, Scrosati B, Passerini S (2016) Ionic-liquid-based polymer electrolytes for battery applications. Angew Chem Int Ed 55:500–513

    Article  CAS  Google Scholar 

  35. MacFarlane DR, Tachikawa N, Forsyth M, Pringle JM, Howlett PC, Elliott GD, Angell CA (2014) Energy applications of ionic liquids. Energy Environmental Scienc 7:232–250

    Article  CAS  Google Scholar 

  36. MacFarlane DR, Forsyth M, Howlett PC, Kar M, Passerini S, Pringle JM, Zhang S (2016) Ionic liquids and their solid-state analogues as materials for energy generation and storage. Nature Reviews Materials 11:1–15

    Google Scholar 

  37. Karakulina A, Gopakumar A, Akçok I, Roulier BL, LaGrange T, Katsyuba SA, Dyson PJ (2016) Rhodium nanoparticle–Lewis acidic ionic liquid catalyst for the chemoselective reduction of Heteroarenes. Angew Chem 128:300–304

    Article  Google Scholar 

  38. Jie H, Cui X, Zhang Y, Feng T, Li X, Lin R, Xu L (2016) Transesterification of methyl acetate with isobutanol in a reactive and extractive distillation column with ionic liquid as catalyst and molecular liquid as entrainer. Ind Eng Chem Res 55:404–419

    Article  CAS  Google Scholar 

  39. Sezginel KB, Keskin S, Uzun A (2016) Tuning the gas separation performance of CuBTC by ionic liquid incorporation. Langmuir 32:1139–1147

    Article  CAS  Google Scholar 

  40. Cowan MG, Masuda M, McDanel WM, Kohno Y, Gin DL, Noble RD (2016) Phosphonium-based poly (ionic liquid) membranes: the effect of cation alkyl chain length on light gas separation properties and ionic conductivity. J Membrane Sci 498:408–413

    Article  CAS  Google Scholar 

  41. Smigla M, Pringle JM, Lu X, Han L, Zhang S, Gao H, MacFarlane DR, Rogers RD (2014) Ionic liquids for energy, materials, and medicine. Chem Commun 50:9228–9250

    Article  Google Scholar 

  42. Chatzimitakos T, Binellas C, Maidatsi K, Stalikas C (2016) Magnetic ionic liquid in stirring-assisted drop-breakup microextraction: proof-of-concept extraction of phenolic endocrine disrupters and acidic pharmaceuticals. Anal Chim Acta 910:53–59

    Article  CAS  Google Scholar 

  43. An JH, Jin F, Kim HS, Ryu HC, Kim JS, Kim HM, Jung K (2016) Application of ionic liquid to polymorphic transformation of anti-viral/HIV drug adefovir dipivoxil. Arch Pharm Res 39:646–659

    Article  CAS  Google Scholar 

  44. Wojnarowska Z, Knapik J, Rams-Baron M, Jedrzejowska A, Paczkowska M, Krause A, Paluch M (2016) Amorphous protic ionic systems as promising active pharmaceutical ingredients: The case of the Sumatriptan succinate drug. Mol Pharm 13:1111–1122

    Article  CAS  Google Scholar 

  45. Meyer D, Strassner T (2011) 1,2,4-triazole-based tunable aryl/alkyl ionic liquids. J Org Chem 76:305–308

    Article  CAS  Google Scholar 

  46. Daily LA, Miller KM (2013) Correlating structure with thermal properties for a series of 1-alkyl-4-methyl-1, 2, 4-triazolium ionic liquids. J Org Chem 78:4196–4201

    Article  CAS  Google Scholar 

  47. Silvester DS, Compton RG (2006) Electrochemistry in room temperature ionic liquids: a review and some possible applications. Phys Chem 220:1247–1274

    CAS  Google Scholar 

  48. Buzzeo MC, Evans RG, Compton RG (2004) Non-haloaluminate room-temperature ionic liquids in electrochemistry—a review. Chem Phys Chem 5:1106–1120

    Article  CAS  Google Scholar 

  49. Koch VR, Dominey LA, Nanjundiah C (1996) The intrinsic anodic stability of several anions comprising solvent-free ionic liquids. J Electrochem Soc 143:798–803

    Article  CAS  Google Scholar 

  50. Kroon MC, Buijs W, Peters CJ, Witkamp GJ (2006) Decomposition of ionic liquids in electrochemical processing. Green Chem 8:241–245

    Article  CAS  Google Scholar 

  51. Yüce AO, Mert BD, Kardas G, Yazıcı B (2014) Electrochemical and quantum chemical studies of 2-amino-4-methyl-thiazole as corrosion inhibitor for mild steel in HCl solution. Corros Sci 183:310–316

    Article  CAS  Google Scholar 

  52. Ong SP, Andreussi O, Wu Y, Marzari N, Ceder G (2011) Electrochemical windows of room-temperature ionic liquids from molecular dynamics and density functional theory calculations. Chem Mater 23:2979–2986

    Article  CAS  Google Scholar 

  53. Buijs W, Witkamp G-J, Kroon MC (2012) Correlation between quantumchemically calculated lumo energies and the electrochemical window of ionic liquids with reduction-resistant anions. Int J Electrochem 2012:589050–589056

    Article  CAS  Google Scholar 

  54. Galinski M, Lewandowski A, Stepniak I (2006) Ionic liquids as electrolytes. Electrochim Acta 51:5567–5580

    Article  CAS  Google Scholar 

  55. Hapiot P, Lagrost C (2008) Electrochemical reactivity in room-temperature ionic liquids. Chem Rev 108:2238–2264

    Article  CAS  Google Scholar 

  56. Zhang Y, Shi C, Brennecke JF, Maginn EJ (2014) Refined method for predicting electrochemical windows of ionic liquids and experimental validation studies. J Phys Chem B 118:6250–6255

    Article  CAS  Google Scholar 

  57. Mousavi MP, Kashefolgheta S, Stein A, Bühlmann P (2016) Electrochemical stability of quaternary ammonium cations: an experimental and computational study. J Electrochem Soc 2016(163):H74–H80

    Article  CAS  Google Scholar 

  58. Kazemiabnavi S, Zhang Z, Thornton K, Banerjee S (2016) Electrochemical stability window of imidazolium-based ionic liquids as electrolytes for lithium batteries. J Phys Chem B 120:5691–5702

    Article  CAS  Google Scholar 

  59. Wang H, Gu S, Bai Y, Chen S, Zhu N, Wu C, Wu F (2015) Anion-effects on electrochemical properties of ionic liquid electrolytes for rechargeable aluminum batteries. J Mater Chem A 3:22677–22686

    Article  CAS  Google Scholar 

  60. Wu F, Zhu N, Bai Y, Liu L, Zhou H, Wu C (2016) Highly safe ionic liquid electrolytes for sodium-ion battery: wide electrochemical window and good thermal stability. ACS Appl Mater Interfaces 8:21381–21386

    Article  CAS  Google Scholar 

  61. O’Mahony A, Silvester DS, Aldous L, Hardacre C, Compton RG (2008) Effect of water on the electrochemical window and potential limits of room-temperature ionic liquids. J Chem Eng Data 53:2884–2891

    Article  CAS  Google Scholar 

  62. Abdul-Sada AK, Greenway AM, Hitchcock PB, Mohammed TJ, Seddon KR, Zora JA (1986) Upon the structure of room temperature halogenoaluminate ionic liquids. J Chem Soc Chem Commun 24:1753–1754

    Article  Google Scholar 

  63. Wulf A, Fumino K, Ludwig R (2010) Spectroscopic evidence for an enhanced anion–cation interaction from hydrogen bonding in pure imidazolium ionic liquids. Angew Chem Int Ed 49:449–453

    Article  CAS  Google Scholar 

  64. Katsyuba S, Zvereva EE, Vidis A, Dyson PJ (2007) Application of density functional theory and vibrational spectroscopy toward the rational design of ionic liquids. J Phys Chem B 111:352–370

    Article  CAS  Google Scholar 

  65. Fumino K, Wulf A, Ludwig R (2008) The cation–anion interaction in ionic liquids probed by far-infrared spectroscopy. Angew Chem Int Ed 47:3830–3834

    Article  CAS  Google Scholar 

  66. Wulf A, Fumino K, Ludwig R (2010) Spectroscopic evidence for an enhanced anion-cation interaction due to hydrogen bonding in pure imidazolium ionic liquids. Angew Chem Int Ed 49:449–453

    Article  CAS  Google Scholar 

  67. Wakai C, Oleinikova A, Ott M, Weingartner H (2005) How polar are ionic liquids? Determination of the static dielectric constant of an imidazolium-based ionic liquid by microwave dielectric spectroscopy. J Phys Chem B 109:17028–17030

    Article  CAS  Google Scholar 

  68. Schroder C, Hunger J, Stoppa A, Buchner R, Steinhauser O (2008) On the collective network of ionic liquid/water mixtures. II Decomposition and interpretation of dielectric spectra. J Chem Phys 129:184501–184510

    Article  CAS  Google Scholar 

  69. Men S, Lovelock KRJ, Licence P (2011) X-ray photoelectron spectroscopy of pyrrolidinium-based ionic liquids: cation–anion interactions and a comparison to imidazolium-based analogues. Phys Chem Chem Phys 13:15244–15255

    Article  CAS  Google Scholar 

  70. Fumino K, Fossog V, Wittler K, Hempelmann R, Ludwig R (2013) Dissecting anion–cation interaction energies in protic ionic liquids. Angew Chem Int Ed 52:2368–2372

    Article  CAS  Google Scholar 

  71. Blundell RK, Licence P (2014) Tuning cation–anion interactions in ionic liquids by changing the conformational flexibility of the cation. Chem Commun 50:12080–12083

    Article  CAS  Google Scholar 

  72. Lahiri A, Li G, Olschewski M, Endres F (2016) Influence of polar organic solvents in an ionic liquid containing lithium bis (fluorosulfonyl) amide: effect on the cation-anion interaction, Lithium ion Battery Performance, and Solid Electrolyte Interphase. ACS Appl Mater Interfaces 8:34143–34150

    Article  CAS  Google Scholar 

  73. Mao Y, Damodaran K (2014) Ionization dynamics in ionic liquids probed via self-diffusion coefficient measurements. Chem Phys 440(31):87–93

    Article  CAS  Google Scholar 

  74. Allen JJ, Bowser SR, Krishnan Damodaran K (2014) Molecular interactions in the ionic liquid emim acetate and water binary mixtures probed via NMR spin relaxation and exchange spectroscopy. Phys Chem Chem Phys 16:8078–8085

    Article  CAS  Google Scholar 

  75. Allen JJ, Schneider Y, Kail BW, Luebke DR, Nulwala H, Damodaran K (2013) Nuclear spin relaxation and molecular interactions of a novel triazolium-based ionic liquid, 117: 3877–3883

  76. Berg RW, Riisager A, Van Buu ON, Fehrmann R, Harris P, Tomaszowska AA, Seddon KR (2009) Crystal structure, vibrational spectroscopy and ab initio density functional theory calculations on the ionic liquid forming 1,1,3,3-tetramethylguanidinium bis{(trifluoromethyl) sulfonyl}amide. J Phys Chem B 113:8878–8886

    Article  CAS  Google Scholar 

  77. Katsyuba SA, Griaznova TP, Vidis A, Dyson PJ (2009) Structural studies of the ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate in dichloromethane using a combined DFT-NMR spectroscopic approach. J Phys Chem B 113:5046–5051

    Article  CAS  Google Scholar 

  78. Xiao D, Hines LG, Holtz MW, Song KY, Bartsch RA, Quitevis EL (2010) Effect of cation symmetry on the low-frequency spectra of imidazolium ionic liquids: OKE and Raman spectroscopic measurements and DFT calculations. Chem Phys Lett 497:37–52

    Article  CAS  Google Scholar 

  79. Zhang S, Qi X, Ma X, Lu L, Zhang Q, Deng Y (2012) Investigation of cation–anion interaction in 1-(2-hydroxyethyl)-3-methylimidazolium-based ion pairs by density functional theory calculations and experiments. J Phys Org Chem 25:248–257

    Article  CAS  Google Scholar 

  80. Fumino K, Reimann S, Ludwig R (2014) Probing molecular interaction in ionic liquids by low frequency spectroscopy: Coulomb energy, hydrogen bonding and dispersion forces. Phys Chem Chem Phys 16:21903–21929

    Article  CAS  Google Scholar 

  81. Fumino K, Ludwig R (2014) Analyzing the interaction energies between cation and anion in ionic liquids: the subtle balance between coulomb forces and hydrogen bonding. J Mol Liq 192:94–102

    Article  CAS  Google Scholar 

  82. Fujii K, Seki S, Ohara K, Kameda Y, Doi H, Saito S, Umebayashi Y (2014) High-energy X-ray diffraction and MD simulation study on the ion-ion interactions in 1-ethyl-3-ethylimidazolium bis (fluorosulfonyl) amide. J Solut Chem 43:1655–1668

    Article  CAS  Google Scholar 

  83. Liu X, Li S, Wang D, Ma Y, Liu X, Ning M (2015) Theoretical study on the structure and cation–anion interaction of triethylammonium chloroaluminate ionic liquid. Computational and Theoretical Chemistry. 1073:67–74

    Article  CAS  Google Scholar 

  84. Voroshylova IV, Teixeira F, Costa R, Pereira CM, Cordeiro MND (2016) Interactions in the ionic liquid [EMIM][FAP]: a coupled experimental and computational analysis. Phys Chem Chem Phys 18:2617–2628

    Article  CAS  Google Scholar 

  85. Rathke DKB, Kiefer J (2016) Materny, A. Molecular structure and interactions in the ionic liquid 1-ethyl-3-methylimidazolium trifluoromethanesulfonate. J Phys Chem A 120:6274–6286

    Article  CAS  Google Scholar 

  86. Mao JX, Damodaran K (2015) Spectroscopic and computational analysis of the molecular interactions in the ionic liquid [Emim]+[FAP]. Ionics 21(6):1605–1613

    Article  CAS  Google Scholar 

  87. Roohi H, Salehi R (2011) Molecular interactions in methylimidazolium tetrafluoroborate ionic liquid([Mim+][BF4 ]): Structures, binding energies, topological properties and NMR one- and two bonds spin–spin coupling constants. J Mol Liq 161:63–71

    Article  CAS  Google Scholar 

  88. Roohi H, Khyrkhah S (2013) Ion-pairs formed in [Mim+][N(CN)2 ] ionic liquid: structures, binding energies, NMR SSCCs, volumetric, thermodynamic and topological properties. J Mol Liq 177:119–128

    Article  CAS  Google Scholar 

  89. Roohi H, Khyrkhah S (2015) Quantum chemical studies on nanostructures of the hydrated methylimidazolium–based ionic liquids. J Mol Model 21:1–11

    Article  CAS  Google Scholar 

  90. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  91. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital donor–acceptor viewpoint. Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  92. Zhao Y, Truhlar DG (2006) The M06 suite of density Functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new Functionals and systematic testing of four M06 functionals and twelve other functionals. Theor Chem Accounts 120:215–241

    Article  CAS  Google Scholar 

  93. McLean AD, Chandler GS (1980) Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11–18. J Chem Phys 72:5639–5648

    Article  CAS  Google Scholar 

  94. Boys SF, de Bernardi F (1970) Calculation of small molecular interactions by differences of separate total energies−some procedures with reduced errors. J Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  95. Schwabe T, Grimme S (2006) Towards chemical accuracy for the thermodynamics of large molecules: New hybrid density functionals including non-local correlation effects. Phys Chem Chem Phys 8:4398–4401

    Article  CAS  Google Scholar 

  96. Schwabe T, Grimme S (2007) Double-hybrid density functionals with long-range dispersion corrections: higher accuracy and extended applicability. Phys Chem Chem Phys 9:3397–3406

    Article  CAS  Google Scholar 

  97. Grimme S, Antony J, Ehrlich S, Krieg HA (2010) Consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104–154119

    Article  CAS  Google Scholar 

  98. Montgomery JA Jr, Frisch MJ, Ochterski JW, Petersson GA (2000) A complete basis set model chemistry. VII. Use of the minimum population localization method. J Chem Phys 112:6532–6542

    Article  CAS  Google Scholar 

  99. Montgomery JA Jr, Frisch MJ, Ochterski JW, Petersson GAA (1999) Complete basis set model chemistry. VI. Use of density functional geometries and frequencies. J Chem Phys 110:2822–2827

    Article  CAS  Google Scholar 

  100. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery AJ, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, revision C.01. Gaussian Inc., Wallingford

    Google Scholar 

  101. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  102. Biegler König FW, Schönbohm J, Bayles DJ (2001) Comput Chem 22:545, AIM2000.

  103. Glendening ED, Reed AE, Carpenter JE, Weinhold F (1998) NBO Version:3.1

  104. Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3094 and references cited therein

    Article  CAS  Google Scholar 

  105. Pascual-Ahuir JL, Silla E, Tunon I (1994) GEPOL: an improved description of molecular surfaces. III. A new algorithm for the computation of a solvent-excluding surface. J Comput Chem 15:1127–1138

    Article  CAS  Google Scholar 

  106. Levine IN (2013) Quantum chemistry, 7th edn, Pearson.

  107. Eckert F, Klamt A (2002) Fast solvent screening via quantum chemistry:COSMO-RS approach. AICHE J 48:369–385

    Article  CAS  Google Scholar 

  108. Klamt A (1995) Conductor-like screening model for real solvents: a new approach to the quantitative calculation of solvation phenomena. J Phys Chem 99:2224–2235

    Article  CAS  Google Scholar 

  109. Dong K, Zhang S, Wang D, Yao X (2006) Hydrogen bonds in imidazolium ionic liquids. J Phys Chem A 110:9775–9782

    Article  CAS  Google Scholar 

  110. Schulz T, Ahrens S, Meyer D, Allolio C, Peritz A, Strassner T (2011) Electronic effects of para-substitution on the melting points of TAAILs. Chem Asian J 6:863–867

    Article  CAS  Google Scholar 

  111. Tsuzuki S, Tokuda H, Hayamizu K et al (2005) Magnitude and directionality of interaction in ion pairs of ionic liquids: relationship with ionic conductivity. J Phys Chem B 109:16474–16481

    Article  CAS  Google Scholar 

  112. Roohi H, Ghauri K (2015) Exploring physicochemical properties of the nanostructured tunable Aryl Alkyl Ionic Liquids (TAAILs). J Mol Liq 209:14–24

    Article  CAS  Google Scholar 

  113. Burns LA, Vázquez-Mayagoitia Á, Sumpter BG, Sherrill CD (2011) Density-functional approaches to noncovalent interactions: a comparison of dispersion corrections (DFT-D), exchange-hole dipole moment (XDM) theory, and specialized functionals. J Chem Phys 134:084107–084125

    Article  CAS  Google Scholar 

  114. Cybulski SM, Lytle ML (2007) The origin of deficiency of the supermolecule second-order Møller-Plesset approach for evaluating interaction energies. J Chem Phys 127:141102–141104

    Article  CAS  Google Scholar 

  115. Lao KU, Schaffer R, Jansen G, Herbert JM (2015) Accurate description of intermolecular interactions involving ions using symmetry-adapted perturbation theory. J Chem Theory Comput 11:2473–2486

    Article  CAS  Google Scholar 

  116. Khrizman A, Cheng HY, Bottini G, Moyna G (2015) Observation of aliphatic C–H⋯ X hydrogen bonds in imidazolium ionic liquids. Chem Commun 51:3193–3195

    Article  CAS  Google Scholar 

  117. Katsyuba SA, Vener MV, Zvereva EE, Fei Z, Scopelliti R, Laurenczy G, Dyson PJ (2013) How strong is hydrogen bonding in ionic liquids? Combined X-ray crystallographic, infrared/Raman spectroscopic, and density functional theory study. J Phys Chem B 117:9094–9105

    Article  CAS  Google Scholar 

  118. Roohi H, Ghauri K (2016) Influence of various anions and cations on electrochemical and physicochemical properties of the nanostructured Tunable Aryl Alkyl Ionic Liquids (TAAILs): A DFT M06-2X study. Thermochim Acta 639:20–40

    Article  CAS  Google Scholar 

  119. Bondi A (1964) van der Waals volumes and radii. J Phys Chem 68:441–451

    Article  CAS  Google Scholar 

  120. Jin X, Hu B, Jia H, Liu Z, Lu C (2014) Structure, thermal behaviour, and energetic properties of 4-amino-1,2,4-triazole dinitroguanidine salt. Aust J Chem 67:277–282

    CAS  Google Scholar 

  121. Drake G, Hawkins T, Brand A, Hall L, Mckay M, Vij A, Ismail I (2003) Energetic, low-melting salts of simple heterocycles. Propellants Explos Pyrotech 28:174–180

    Article  CAS  Google Scholar 

  122. Emel'yanenko VN, Zaitsau DH, Verevkin SP, Heintz A (2011) Vaporization and formation enthalpies of 1-alkyl-3-methylimidazolium tricyanomethanides. J Phys Chem B 115:11712–11717

    Article  CAS  Google Scholar 

  123. Verevkin SP, Emel'yanenko VN, Zaitsau DH, Heintz A, Muzny CD, Frenkelb M (2010) Thermochemistry of imidazolium-based ionic liquids: experiment and first-principles calculations. Phys Chem Chem Phys 12:14994–15000

    Article  CAS  Google Scholar 

  124. Eckert F, Klamt A (2006) COSMOtherm Version C2.1 Release 01.08, COSMO logic GmbH & Co. KG, Leverkusen, Germany.

  125. Cossi M, Rega N, Scalmani G, Barone V (2003) Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J Comput Chem 24:669–681

    Article  CAS  Google Scholar 

  126. Takano Y, Houk KN (2005) Benchmarking the conductor-like polarizable continuum model (CPCM) for aqueous solvation free energies of neutral and ionic organic molecules. J Chem Theory Comput 1:70–77

    Article  CAS  Google Scholar 

  127. Palomar J, Ferro VR, Torrecilla JS, Rodrıguez F (2007) Density and molar volume predictions using COSMO-RS for ionic liquids. An approach to solvent design. Industrial and Engineering Chemistry Research 46:6041–6048

    Article  CAS  Google Scholar 

  128. Hobza P, Havlas Z (2000) Blue-shifting hydrogen bonds. Chem Rev 100:4253–4264

    Article  CAS  Google Scholar 

  129. Reed AE, Curtiss LA, Weinhold F (1998) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926

    Article  Google Scholar 

  130. Hobza P, Spirko V, Selzle HL, Schlag EW (1998) Anti-hydrogen bond in the benzene dimer and other carbon proton donor complexes. J Phys Chem A 102:2501–2504

    Article  CAS  Google Scholar 

  131. Koch U, Popelier PLA (1995) Characterization of CHO hydrogen bonds on the basis of the charge density. J Phys Chem 99:9747–9754

    Article  CAS  Google Scholar 

  132. Popelier PLA (1998) Characterization of a dihydrogen bond on the basis of the electron density. J Phys Chem A 102:873–1878

    Article  Google Scholar 

  133. Endres F, El Abedin SZ (2006) Air and water stable ionic liquids in physical chemistry. Phys Chem Chem Phys 8:2101–2116

    Article  CAS  Google Scholar 

  134. Wasserscheid P, Welton T (2008) Ionic liquids in synthesis. Wiley-VCH, Weinheim

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Roohi.

Electronic supplementary material

Figure S1

(DOCX 399 kb)

Table S1

(DOCX 26 kb)

Table S2

(DOCX 33 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roohi, H., Salehi, R. Molecular engineering of the electronic, structural, and electrochemical properties of nanostructured 1-methyl-4-phenyl 1,2,4 triazolium-based [PhMTZ][X1–10] ionic liquids through anionic changing. Ionics 24, 483–504 (2018). https://doi.org/10.1007/s11581-017-2198-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2198-3

Keywords

Navigation