Skip to main content

Advertisement

Log in

Fairly improved pseudocapacitance of PTP/PANI/TiO2 nanohybrid composite electrode material for supercapacitor applications

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A ternary composite of PTP/PANI/TiO2 was synthesized using in situ oxidative polymerization. Material design involves the blending of the two polymers namely polyaniline and polythiophene and further incorporating TiO2 particles in the blended polymer matrix. TiO2 being transition metal oxide possesses variable oxidation states leading to excellent pseudocapacitive properties, owing to the synergy of the inorganic filler (TiO2). PTP/PANI/TiO2 ternary composite exhibits improved capacitive performance as compared to its constituents in pristine form. This ternary composite exhibits the maximum specific capacitance of 265 F g−1 as measured by galvanostatic charging-discharging (GCD) at 1 A g−1. Further, the hybrid composite was also characterized to possess an energy density of 9.09 Wh kg−1 at 1 A g−1 and a power density of 3770 W kg−1 at a current density of 10 A g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Zhang Q, Uchaker E, Candelaria SL, Cao G (2013) Nanomaterials for energy conversion and storage. Chem Soc Rev 42:3127–3171. doi:10.1039/c3cs00009e

    Article  CAS  Google Scholar 

  2. Palacin MR (2009) Recent advances in rechargeable battery materials: a chemist’s perspective. Chem Soc Rev 38:2565–2575. doi:10.1039/b820555h

    Article  CAS  Google Scholar 

  3. Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104:4245–4270. doi:10.1021/cr020730k

    Article  CAS  Google Scholar 

  4. Reddy MV, Subba Rao GV, Chowdari BVR (2013) Metal oxides and oxysalts as anode materials for Li-ion batteries. Chem Rev 113:5364–5457. doi:10.1021/cr3001884

    Article  CAS  Google Scholar 

  5. Chen XY, Chen C, Zhang ZJ, Xie DH, Deng X (2013) Nitrogen-doped porous carbon prepared from urea formaldehyde resins by template carbonization method for supercapacitors. Ind Eng Chem Res 52:10181–10188. doi:10.1021/ie400862h

    Article  CAS  Google Scholar 

  6. Majumder M, Choudhary RB, Thakur AK, Karbhal I (2017) Impact of rare-earth metal oxide (Eu2O3) on the electrochemical properties of a polypyrrole/CuO polymeric composite for supercapacitor applications. RSC Adv 7:20037–20048. doi:10.1039/c7ra01438d

    Article  Google Scholar 

  7. He Y, Chen W, Li X, Zhang Z, Fu J, Zhao C, Xie E (2012) Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes. ACS Nano 7:174–182. doi:10.1021/nn304833s

    Article  Google Scholar 

  8. Xia X, Hao Q, Lei W, Wang W, Wang H, Wang X (2012) Reduced-graphene oxide/molybdenum oxide/polyaniline ternary composite for high energy density supercapacitors: synthesis and properties. J Mater Chem 22:8314–8320. doi:10.1039/c2jm16216d

  9. Muniraj VKA, Kamaja CK, Shelke MV (2016) RuO2· nH2O nanoparticles anchored on carbon nano-onions: an efficient electrode for Solid State flexible electrochemical supercapacitor. ACS Sustain Chem Eng 5:2528–2534. doi:10.1021/acssuschemeng.5b01627

    Article  Google Scholar 

  10. Zhao K, Wen M, Dong Y, Zhang L, Yan M, Xu W, Niu C, Zhou L, Wei Q, Ren W, Wang X (2017) Thermal induced strain relaxation of 1D iron oxide for solid electrolyte interphase control and lithium storage improvement. Adv Energy Mater 7(6):1601582. doi:10.1002/aenm.201601582

    Article  Google Scholar 

  11. Xie Y, Wang D, Zhou Y, Du H, Xia C (2014) Supercapacitance of polypyrrole/titania/polyaniline coaxial nanotube hybrid. Synth Met 198:59–66. doi:10.1016/j.synthmet.2014.09.029

    Article  CAS  Google Scholar 

  12. Owusu KA, Qu L, Li J, Wang Z, Zhao K, Yang C, Hercule KM, Lin C, Shi C, Wei Q, Zhou L (2017) Low-crystalline iron oxide hydroxide nanoparticle anode for high-performance supercapacitors. Nat Commun 8:14264. doi:10.1038/ncomms14264

    Article  Google Scholar 

  13. Thakur AK, Choudhary RB (2016) High-performance supercapacitors based on polymeric binary composites of polythiophene (PTP)-titanium dioxide (TiO2). Synth Met 220:25–33. doi:10.1016/j.synthmet.2016.05.023

    Article  CAS  Google Scholar 

  14. Reddy AL, Shaijumon MM, Gowda SR, Ajayan PM (2009) Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries. Nano Lett 9:1002–1006. doi:10.1021/nl803081j

    Article  CAS  Google Scholar 

  15. Lee JW, Hall AS, Kim JD, Mallouk TE (2012) A facile and template-free hydrothermal synthesis of Mn3O4 nanorods on graphene sheets for supercapacitor electrodes with long cycle stability. Chem Mater 24:1158–1164. doi:10.1021/cm203697w

    Article  CAS  Google Scholar 

  16. Saravanakumar B, Purushothaman KK, Muralidharan G (2012) Interconnected V2O5 nanoporous network for high-performance supercapacitors. ACS Appl Mater Interfaces 4:4484–4490. doi:10.1021/am301162p

    Article  CAS  Google Scholar 

  17. Prasad KR, Miura N (2004) Electrochemically deposited nanowhiskers of nickel oxide as a high-power pseudocapacitive electrode. Appl Phys Lett 85:4199–4201. doi:10.1063/1.1814816

    Article  CAS  Google Scholar 

  18. Wang H, Casalongue HS, Liang Y, Dai H (2010) Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J Am Chem Soc 132:7472–7477. doi:10.1021/ja102267j

    Article  CAS  Google Scholar 

  19. Thakur AK, Choudhary RB, Majumder M, Gupta G, Shelke MV (2016) Enhanced electrochemical performance of polypyrrole coated MoS2 nanocomposites as electrode material for supercapacitor application. J Electroanal Chem 782:278–287. doi:10.1016/j.jelechem.2016.10.050

    Article  CAS  Google Scholar 

  20. Xie K, Li J, Lai Y, Zhang ZA, Liu Y, Zhang G, Huang H (2011) Polyaniline nanowire array encapsulated in titania nanotubes as a superior electrode for supercapacitors. Nanoscale 3:2202–2207. doi:10.1039/c0nr00899k

    Article  CAS  Google Scholar 

  21. Roncali J (1992) Conjugated poly (thiophenes) synthesis functionalization and applications. Chem Rev 92:711–738. doi:10.1021/cr00012a009

    Article  CAS  Google Scholar 

  22. Thakur AK, Deshmukh AB, Choudhary RB, Karbhal I, Majumder M, Shelke MV (2017) Facile synthesis and electrochemical evaluation of PANI/CNT/MoS2 ternary composite as an electrode material for high performance supercapacitor. Mater Sci Eng B 223:24–34. doi:10.1016/j.mseb.2017.05.001

    Article  CAS  Google Scholar 

  23. Singu BS, Male U, Srinivasan P, Pabba S (2014) Use of surfactant in aniline polymerization with TiO2 to PANI-TiO2 for supercapacitor performance. J Solid State Electrochem 18:1995–2003. doi:10.1007/s10008-014-2444-9

    Article  CAS  Google Scholar 

  24. Menga Q, Caia K, Chena Y, Chen L (2017) Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy 36:268–285. doi:10.1016/j.nanoen.2017.04.040

    Article  Google Scholar 

  25. Xie S, Gan M, Ma L, Li Z, Yan J, Yin H, Shen X, Xu F, Zheng J, Zhang J, Hu J (2014) Synthesis of polyaniline-titania nanotube arrays hybrid composite via self-assembling and graft polymerization for supercapacitor application. Electrochim Acta 120:408–415. doi:10.1016/j.electacta.2013.12.067

    Article  CAS  Google Scholar 

  26. Su H, Wang T, Zhang S, Song J, Mao C, Niu H, Jin B, Wu J, Tian Y (2012) Facile synthesis of polyaniline/TiO2/graphene oxide composite for high performance supercapacitors. Solid State Sci 14:677–681. doi:10.1016/j.solidstatesciences.2012.03.020

    Article  CAS  Google Scholar 

  27. Gawli Y, Banerjee A, Dhakras D, Deo M, Bulani D, Wadgaonkar P, Shelke M, Ogale S (2016) 3D polyaniline architecture by concurrent inorganic and organic acid doping for superior and robust high rate supercapacitor performance. Sci Rep 6:21002. doi:10.1038/srep21002

    Article  CAS  Google Scholar 

  28. Patil BH, Jagadale AD, Lokhande CD (2012) Synthesis of polythiophene thin films by simple successive ionic layer adsorption and reaction (SILAR) method for supercapacitor application. Synth Met 162:1400–1405. doi:10.1016/j.synthmet.2012.05.023

    Article  CAS  Google Scholar 

  29. Zhu Y, Xu S, Jiang L, Pan K, Dan Y (2008) Synthesis and characterization of polythiophene/titanium dioxide composites. React Funct Polym 68:1492–1498. doi:10.1016/j.reactfunctpolym.2008.07.008

    Article  CAS  Google Scholar 

  30. Ashok A, Maharana HS, Basu A (2015) Effect of electro-co-deposition parameters on surface mechanical properties of Cu-TiO2 composite coating. Bull Mater Sci 38:335–342. doi:10.1007/s12034-015-0884-1

    Article  CAS  Google Scholar 

  31. Karim MR, Lee CJ, Lee MS (2006) Synthesis and characterization of conducting polythiophene/carbon nanotubes composites. J Polym Sci A Polym Chem 44:5283–5290. doi:10.1002/pola.21640

    Article  CAS  Google Scholar 

  32. Vu QT, Pavlik M, Hebestreit N, Rammelt U, Plieth W, Pfleger J (2005) Nanocomposites based on titanium dioxide and polythiophene: structure and properties. React Funct Polym 65:69–77. doi:10.1016/j.reactfunctpolym.2004.11.011

    Article  CAS  Google Scholar 

  33. Aprile C, Maretti L, Alvaro M, Scaiano JC, Garcia H (2008) Long-lived (minutes) photoinduced charge separation in a structured periodic mesoporous titania containing 2, 4, 6-triphenylpyrylium as guest. Dalton Trans 40:5465–5470. doi:10.1039/b807453d

    Article  Google Scholar 

  34. Lan Y, Zhou L, Tong Z, Pang QI, Wang FA, Gong F (2011) Synthesis and characterization of polythiophene-modified TiO2 nanotube arrays. Bull Mater Sci 34:1173–1177. doi:10.1007/s12034-011-0243-9

    Article  CAS  Google Scholar 

  35. Radychev N, Kempken B, Krause C, Li J, Kolny-Olesiak J, Borchert H, Parisi J (2015) Photovoltaic response of hybrid solar cells with alloyed ZnS-CuInS2 nanorods. Org Electron 21:92–99. doi:10.1016/j.orgel.2015.02.027

    Article  CAS  Google Scholar 

  36. Zhang X, Wang J, Liu J, Wu J, Chen H, Bi H (2017) Design and preparation of a ternary composite of graphene oxide/carbon dots/polypyrrole for supercapacitor application: importance and unique role of carbon dots. Carbon 115:134–146. doi:10.1016/j.carbon.2017.01.005

    Article  CAS  Google Scholar 

  37. Bolagam R, Srinivasan P (2017) Use of oil in the polymerization of aniline to polyaniline salt containing dual dopants, sulfuric acid, and castor oil: material for high-performance supercapacitor. Ionics 23:1–8. doi:10.1007/s11581-016-1936-2

    Article  Google Scholar 

  38. Chen W, Tao X, Li Y, Wang H, Wei D, Ban C (2016) Hydrothermal synthesis of graphene-MnO2. J Mater Sci Mater Electron 27:6816–6822. doi:10.1007/s10854-016-4632-0

    Article  CAS  Google Scholar 

  39. Lu X, Dou H, Yuan C, Yang S, Hao L, Zhang F, Shen L, Zhang L, Zhang X (2012) Polypyrrole/carbon nanotube nanocomposite enhanced the electrochemical capacitance of flexible graphene film for supercapacitors. J Power Sources 197:319–324. doi:10.1016/j.jpowsour.2011.08.112

    Article  CAS  Google Scholar 

  40. Sun W, Mo Z (2013) PPy/graphene nanosheets/rare earth ions: a new composite electrode material for supercapacitor. Mater Sci Eng B 178:527–532. doi:10.1016/j.mseb.2013.02.003

    Article  CAS  Google Scholar 

  41. Lu X, Zhang F, Dou H, Yuan C, Yang S, Hao L, Shen L, Zhang L, Zhang X (2012) Preparation and electrochemical capacitance of hierarchical graphene/polypyrrole/carbon nanotube ternary composites. Electrochim Acta 69:160–166. doi:10.1016/j.electacta.2012.02.107

    Article  CAS  Google Scholar 

  42. Zhou DL, Feng JJ, Cai LY, Fang QX, Chen JR, Wang AJ (2013) One-pot synthesis of graphene/SnO2/PEDOT ternary electrode material for supercapacitors. Electrochim Acta 108:118–126. doi:10.1016/j.electacta.2013.07.012

    Article  Google Scholar 

  43. Peng H, Ma G, Ying W, Wang A, Huang H, Lei Z (2012) In situ synthesis of polyaniline/sodium carboxymethyl cellulose nanorods for high-performance redox supercapacitors. J Power Sources 211:40–45. doi:10.1016/j.jpowsour.2012.03.074

    Article  CAS  Google Scholar 

  44. Fan LQ, Liu GJ, Wu JH, Liu L, Lin JM, Wei YL (2014) Asymmetric supercapacitor based on graphene oxide/polypyrrole composite and activated carbon electrodes. Electrochim Acta 137:26–33. doi:10.1016/j.electacta.2014.05.137

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Indian Institute of Technology (Indian school of mines), Dhanbad, India, for providing experimental facilities and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Bilash Choudhary.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, A.K., Choudhary, R.B., Majumder, M. et al. Fairly improved pseudocapacitance of PTP/PANI/TiO2 nanohybrid composite electrode material for supercapacitor applications. Ionics 24, 257–268 (2018). https://doi.org/10.1007/s11581-017-2183-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2183-x

Keywords

Navigation