Skip to main content

Advertisement

Log in

Synthesis of novel poly 4,4′-diaminodiphenyl sulphone-Fe2O3 nanocomposites for better electrochemical capacitance

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A novel poly 4,4′-diaminodiphenyl sulphone (PDDS)–Fe2O3 nanocomposite was synthesized from 4,4′-diaminodiphenyl sulphone in presence of iron oxide nanoparticles by oxidation polymerization using potassium perdisulphate. The solubility performance of PDDS-Fe2O3 nanocomposites exposed better solubility with chloroform, trichloroethylene, N,N-dimethylformamide (DMF) and dimethyl sulphoxide (DMSO). Field emission scanning electron microscope (FE-SEM) and transmission electron microscope (TEM) analyses showed mixed granular nature of the PDDS-Fe2O3 nanocomposites. Energy-dispersive X-ray (EDAX) analysis confirmed the presence of iron oxide nanoparticles in the composites. X-ray diffraction patterns revealed the formation of highly crystalline PDDS-Fe2O3 with ~40-nm size of crystallites. A single absorption peak observed at around 3450 cm-1 is due to the N–H stretching vibration of the imino groups of PDDS-Fe2O3 nanocomposites, and it has revealed the participation of N–H group in the polymerization process. The conductivity of the PDDS-Fe2O3 nanocomposites was determined to be 7.14 × 10-2 S cm-1. The observed capacitance value (256 ± 5 μF) of chemically synthesized PDDS-Fe2O3 nanocomposites has proven their promising application as an energy storage material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. El Mendili Y, Bardeau J-F, Grasset F, Greneche J-M, Cador O, Guizouarn T, Randrianantoandro N (2014) Magnetic interactions in γ-Fe2O3@SiO2 nanocomposites. J Appl Phys 116(5):053905

    Article  Google Scholar 

  2. Nerambourg N, Aubert T, Neaime C, Cordier S, Mortier M, Patriarche G, Grasset F (2014) Multifunctional hybrid silica nanoparticles based on [Mo6Br14]2− phosphorescent nanosized clusters, magnetic γ-Fe2O3 and plasmonic gold nanoparticles. J Colloid Interface Sci 424:132–140

    Article  CAS  Google Scholar 

  3. Cao L, Xu F, Liang YY, Li HL (2004) Preparation of the novel nanocomposite Co(OH)2/ultra-stable Y zeolite and its application as a supercapacitor with high energy density. Adv Mater 16(20):1853–1857

    Article  CAS  Google Scholar 

  4. Huggins RA (2000) Supercapacitors and electrochemical pulse sources. Solid State Ionics 134(1):179–195

    Article  CAS  Google Scholar 

  5. Jang JH, Han S, Hyeon T, Oh SM (2003) Electrochemical capacitor performance of hydrous ruthenium oxide/mesoporous carbon composite electrodes. J Power Sources 123(1):79–85

    Article  CAS  Google Scholar 

  6. Prasad KR, Munichandraiah N (2002) Fabrication and evaluation of 450 F electrochemical redox supercapacitors using inexpensive and high-performance, polyaniline coated, stainless-steel electrodes. J Power Sources 112(2):443–451

    Article  CAS  Google Scholar 

  7. Manisankar P, Vedhi C, Selvanathan G (2005) Synthesis and characterization of novel nano size electroactive poly 4, 4′-diaminodiphenyl sulphone. J Polym Sci A Polym Chem 43(8):1702–1707

    Article  CAS  Google Scholar 

  8. Refaey S, Taha F, Shehata H (2004) Corrosion protection of mild steel by formation of iron oxide polybithiophene composite films. J Appl Electrochem 34(9):891–897

    Article  CAS  Google Scholar 

  9. Wang Z, Bi H, Liu J, Sun T, Wu X (2008) Magnetic and microwave absorbing properties of polyaniline/γ-Fe2O3 nanocomposite. J Magn Magn Mater 320(16):2132–2139

    Article  CAS  Google Scholar 

  10. Qu Q, Yang S, Feng X (2011) 2D sandwich-like sheets of iron oxide grown on graphene as high energy anode material for supercapacitors. Adv Mater 23(46):5574–5580

    Article  CAS  Google Scholar 

  11. Wu M-S, Ou Y-H, Lin Y-P (2010) Electrodeposition of iron oxide nanorods on carbon nanofiber scaffolds as an anode material for lithium-ion batteries. Electrochim Acta 55(9):3240–3244

    Article  CAS  Google Scholar 

  12. Yang P, Ding Y, Lin Z, Chen Z, Li Y, Qiang P, Ebrahimi M, Mai W, Wong CP, Wang ZL (2014) Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes. Nano Lett 14(2):731–736

    Article  CAS  Google Scholar 

  13. Xia X, Hao Q, Lei W, Wang W, Sun D, Wang X (2012) Nanostructured ternary composites of graphene/Fe2O3/polyaniline for high-performance supercapacitors. J Mater Chem 22(33):16844–16850

    Article  CAS  Google Scholar 

  14. Yang C, Li H, Xiong D, Cao Z (2009) Hollow polyaniline/Fe3O4 microsphere composites: preparation, characterization, and applications in microwave absorption. React Funct Polym 69(2):137–144

    Article  CAS  Google Scholar 

  15. Gangopadhyay R, De A (1999) Polypyrrole–ferric oxide conducting nanocomposites: I. Synthesis and characterization. Eur Polym J 35(11):1985–1992

    Article  CAS  Google Scholar 

  16. Turcu R, Pana O, Nan A, Craciunescu I, Chauvet O, Payen C (2008) Polypyrrole coated magnetite nanoparticles from water based nanofluids. J Phys D Appl Phys 41(24):245002

    Article  Google Scholar 

  17. Bidan G, Jarjayes O, Fruchart JM, Hannecart E (1994) New nanocomposites based on “tailor dressed” magnetic particles in a polypyrrole matrix. Adv Mater 6(2):152–155

    Article  CAS  Google Scholar 

  18. Long Y, Chen Z, Duvail JL, Zhang Z, Wan M (2005) Electrical and magnetic properties of polyaniline/Fe3O4 nanostructures. Physica B Condens Matter 370(1):121–130

    Article  CAS  Google Scholar 

  19. Deng J, Ding X, Zhang W, Peng Y, Wang J, Long X, Li P, Chan AS (2002) Magnetic and conducting Fe3O4–cross-linked polyaniline nanoparticles with core–shell structure. Polymer 43(8):2179–2184

    Article  CAS  Google Scholar 

  20. Reddy KR, Park W, Sin BC, Noh J, Lee Y (2009) Synthesis of electrically conductive and superparamagnetic monodispersed iron oxide-conjugated polymer composite nanoparticles by in situ chemical oxidative polymerization. J Colloid Interface Sci 335(1):34–39

    Article  CAS  Google Scholar 

  21. Zhang X, Lee J-S, Lee GS, Cha D-K, Kim MJ, Yang DJ, Manohar SK (2006) Chemical synthesis of PEDOT nanotubes. Macromolecules 39(2):470–472

    Article  Google Scholar 

  22. Manisankar P, Vedhi C, Selvanathan G, Prabu HG (2006) Copolymerization of aniline and 4, 4′-diaminodiphenyl sulphone and characterization of formed nano size copolymer. Electrochim Acta 52(3):831–838

    Article  CAS  Google Scholar 

  23. Ho Y-H, Periasamy AP, Chen S-M (2011) Photoelectrocatalytic regeneration of NADH at poly(4,4′-diaminodiphenyl sulfone)/nano TiO2 composite film modified indium tin oxide electrode. Sensor Actuat B-Chem 156(1):84–94

    Article  CAS  Google Scholar 

  24. Yun S-R, Kim KM, Ko JM, Kang Y, Ryu KS (2013) Electrochemical properties of poly(4,4′-diaminodiphenyl sulfone) as a cathode material of lithium secondary batteries. Polym Bull 70(11):3011–3018

    Article  CAS  Google Scholar 

  25. Kim GM, Qin H, Fang X, Sun F, Mather P (2003) Hybrid epoxy-based thermosets based on polyhedral oligosilsesquioxane: cure behavior and toughening mechanisms. J Polym Sci Part B Polym Phys 41(24):3299–3313

    Article  CAS  Google Scholar 

  26. Vedhi C, Raj JA, Gopal N, Somasudaram R, Manisankar P (2010) Synthesis of potential capacitive poly 4, 4′-diaminodiphenyl sulphone–metal nanocomposites and their characterizations. Synth Met 160(11):1307–1312

    Article  CAS  Google Scholar 

  27. Frackowiak E, Jurewicz K, Szostak K, Delpeux S, Béguin F (2002) Nanotubular materials as electrodes for supercapacitors. Fuel Process Technol 77–78:213–219

    Article  Google Scholar 

  28. Vikraman D, Park HJ, Kim S-I, Thaiyan M (2016) Magnetic, structural and optical behavior of cupric oxide layers for solar cells. J Alloys Compd 686:616–627

    Article  CAS  Google Scholar 

  29. Kong H, Song J, Jang J (2010) One-step fabrication of magnetic γ-Fe2O3/polyrhodanine nanoparticles using in situ chemical oxidation polymerization and their antibacterial properties. Chem Commun 46(36):6735–6737

    Article  CAS  Google Scholar 

  30. Wang J (2006) Analytical electrochemistry. John Wiley & Sons

  31. Sugimoto W, Iwata H, Yokoshima K, Murakami Y, Takasu Y (2005) Proton and electron conductivity in hydrous ruthenium oxides evaluated by electrochemical impedance spectroscopy: the origin of large capacitance. J Phys Chem B 109(15):7330–7338

    Article  CAS  Google Scholar 

  32. Wang L, Ye Y, Lu X, Wen Z, Li Z, Hou H, Song Y (2013) Hierarchical nanocomposites of polyaniline nanowire arrays on reduced graphene oxide sheets for supercapacitors. Sci Rep 3:3568

    Google Scholar 

  33. Brickweg LJ, Floryancic BR, Sapper ED, Fernando RH (2007) Shear-induced 1-D alignment of alumina nanoparticles in coatings. J Coating Tech Res 4(1):107–110

    Article  CAS  Google Scholar 

  34. Zeng Y, Yu M, Meng Y, Fang P, Lu X, Tong Y (2016) Iron-based supercapacitor electrodes: advances and challenges. Adv Energy Mater 1601053:1–17

    Article  Google Scholar 

  35. Lee D, Char K (2002) Thermal degradation behavior of polyaniline in polyaniline/Na+-montmorillonite nanocomposites. Polym Degrad Stab 75(3):555–560

    Article  CAS  Google Scholar 

  36. Du X, Xiao M, Meng Y (2004) Facile synthesis of highly conductive polyaniline/graphite nanocomposites. Eur Polym J 40(7):1489–1493

    Article  CAS  Google Scholar 

  37. Xie K, Li J, Lai Y, Lu W, Za Z, Liu Y, Zhou L, Huang H (2011) Highly ordered iron oxide nanotube arrays as electrodes for electrochemical energy storage. Electrochem Commun 13(6):657–660

    Article  CAS  Google Scholar 

  38. Kulal P, Dubal D, Lokhande C, Fulari V (2011) Chemical synthesis of Fe2O3 thin films for supercapacitor application. J Alloys Compd 509(5):2567–2571

    Article  CAS  Google Scholar 

  39. Shivakumara S, Penki TR, Munichandraiah N (2013) Synthesis and characterization of porous flowerlike α-Fe2O3 nanostructures for supercapacitor application. ECS Electrochem Lett 2(7):A60–A62

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anandha Raj Jeyaraman or Dhanasekaran Vikraman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanmugam, A., Jeyaraman, A.R., Venkatesan, S. et al. Synthesis of novel poly 4,4′-diaminodiphenyl sulphone-Fe2O3 nanocomposites for better electrochemical capacitance. Ionics 23, 1249–1257 (2017). https://doi.org/10.1007/s11581-016-1911-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-016-1911-y

Keywords

Navigation