Skip to main content
Log in

Electrosynthesis and characterization of nanostructured MnO2 deposited on stainless steel electrode: a comparative study with commercial EMD

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The nanostructured MnO2 powder was successfully synthesized by electrodeposition on stainless steel (SS) substrate from hot 0.3 M MnSO4·H2O aqueous solution with pH value adjusted to 2. The electrochemical behavior of synthesized MnO2 was compared to that of the commercial electrolytic manganese dioxide (EMD). The investigation was conducted using a new cell which is manufactured in our laboratory. This gave us the possibility to present a new contribution and an improvement in the study of MnO2 electrochemical behavior. The analysis of the synthesized MnO2 and EMD powders by different techniques: FEG-SEM, EDS, TEM, XRD, and BET revealed the presence of electrodeposited nanostructured γ-MnO2 with high specific surface area of 139.59 m2 g−1 for the nanostructured MnO2 and 46.60 m2 g−1 for EMD. The electrochemical study of these powders conducted by linear voltammetry, electrochemical impedance spectroscopy (EIS) measurements, and Zn/MnO2 battery tests in 0.1 M NH4Cl electrolyte showed that the performance of the synthesized nanostructured MnO2 powder was higher than that of the commercial EMD powder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ammundsen B, Paulsen J (2001) Novel lithium ion cathode materials based on layered manganese oxides. Adv Mater 13:943–956

    Article  CAS  Google Scholar 

  2. Thackeray MM (1997) Manganese oxides for lithium batteries. Progress Solid State Chem 25:1–71

    Article  CAS  Google Scholar 

  3. Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104:4271–4302

    Article  CAS  Google Scholar 

  4. Kordesch K (1974) Batteries (manganese dioxide), vol. 1. Marcel Dekker, New York

    Google Scholar 

  5. Messaoudi B, Joiret S, Keddam M, Takenouti H (2001) Anodic behaviour of manganese in alkaline medium. Electrochim Acta 46:2487–2498

    Article  CAS  Google Scholar 

  6. Zhang Y, Sun C, Lu P, Li K, Song S, Xue D (2012) Crystallization design of MnO2 towards better supercapacitance. CrystEngComm 14:5892–5897

    Article  CAS  Google Scholar 

  7. Aghazadeh M, Maragheh MG, Ganjali MR, Norouzi P, Faridbod F (2016b) Electrochemical preparation of MnO2 nanobelts through pulse base-electrogeneration and evaluation of their electrochemical performance. Appl Surf Sci 364:141–147

    Article  CAS  Google Scholar 

  8. Aghazadeh M, Asadi M, Maragheh MG, Ganjali MR, Norouzi P, Faridbod F (2016a) Facile preparation of MnO2 nanorods and evaluation of their supercapacitive characteristics. Appl Surf Sci 364:726–731

    Article  CAS  Google Scholar 

  9. Kitchaev DA, Peng H, Liu Y, Sun J, Perdew JP, Ceder G (2016) Energetics of MnO2 polymorphs in density functional theory. Phys Rev B 93:045132

    Article  Google Scholar 

  10. Wan C, Yuan L, Shen H (2014) Effects of electrode mass-loading on the electrochemical properties of porous MnO2 for electrochemical supercapacitor. Int J Electrochem Sci 9:4024–4038

    Google Scholar 

  11. Xiong Y, Zhou M, Chen H, Feng L, Wang Z et al (2015) Synthesis of honeycomb MnO2 nanospheres/carbon nanoparticles/graphene composites as electrode materials for supercapacitors. Appl Surf Sci 357:1024–1030

    Article  CAS  Google Scholar 

  12. De Wolff P (1959) Interpretation of some γ-MnO2 diffraction patterns. Acta Crystallogr 12:341–345

    Article  CAS  Google Scholar 

  13. Ruetschi P (1984) Cation vacancy model for MnO2. J Electrochem Soc 131:2737–2744

    Article  CAS  Google Scholar 

  14. Kozawa A, Kalnoki-Kis T, Yeager J (1966) Solubilities of Mn (II) and Mn (III) ions in concentrated alkaline solutions. J Electrochem Soc 113:405–409

    Article  CAS  Google Scholar 

  15. Kozawa A, Powers R (1966) The manganese dioxide electrode in alkaline electrolyte; the electron-proton mechanism for the discharge process from MnO2 to MnO1.5. J Electrochem Soc 113:870–878

    Article  CAS  Google Scholar 

  16. Kozawa A, Powers R (1967) Cathodic reduction of beta-MnO2 and gamma-MnO2 in NH4CI and KOH electrolytes. Proc. Electrochemical. Technology 5:535

    CAS  Google Scholar 

  17. Kozawa A, Powers R (1968) Cathodic polarization of the manganese dioxide electrode in alkaline electrolytes. J Electrochem Soc 115:122–126

    Article  CAS  Google Scholar 

  18. Kozawa A, Yeager J (1965) The cathodic reduction mechanism of electrolytic manganese dioxide in alkaline electrolyte. J Electrochem Soc 112:959–963

    Article  CAS  Google Scholar 

  19. Kozawa A, Yeager J (1968) Cathodic reduction mechanism of MnOOH to Mn(OH)2 in alkaline electrolyte. J Electrochem Soc 115:1003–1007

    Article  CAS  Google Scholar 

  20. Chou S, Cheng F, Chen J (2006) Electrodeposition synthesis and electrochemical properties of nanostructured γ-MnO2 films. J Power Sources 162:727–734

    Article  CAS  Google Scholar 

  21. Balachandran D, Morgan D, Ceder G, Van de Walle A (2003) First-principles study of the structure of stoichiometric and Mn-deficient MnO2. J Solid State Chem 173:462–475

    Article  CAS  Google Scholar 

  22. Sayle TX, Catlow CRA, Maphanga RR, Ngoepe PE, Sayle DC (2005) Generating MnO2 nanoparticles using simulated amorphization and recrystallization. J Am Chem Soc 127:12828–12837

    Article  CAS  Google Scholar 

  23. Yadav P, Olsson RT, Jonsson M (2009) Synthesis and characterization of MnO2 colloids. Radiat Phys Chem 78:939–944

    Article  CAS  Google Scholar 

  24. Chabre Y, Pannetier J (1995) Structural and electrochemical properties of the proton/γ-MnO2 system. Progress Solid State Chem 23:1–130

    Article  CAS  Google Scholar 

  25. Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104:4245–4270

    Article  CAS  Google Scholar 

  26. Mimi N, Messaoudi B, Takenouti H, Pillier F (2009) Synthese de nouveaux materieux de structure nanometrique pour electrode de piles. Proc Annales de chimie 34:187–199 Lavoisier

    Article  CAS  Google Scholar 

  27. Tang N, Tian X, Yang C, Pi Z, Han Q (2010) Facile synthesis of α-MnO2 nanorods for high-performance alkaline batteries. J Phys Chem Solids 71:258–262

    Article  CAS  Google Scholar 

  28. Pang S-C, Anderson MA (2000) Novel electrode materials for electrochemical capacitors: part II. Material characterization of sol-gel-derived and electrodeposited manganese dioxide thin films. J Mater Res 15:2096–2106

    Article  CAS  Google Scholar 

  29. Prasad KR, Miura N (2004a) Polyaniline-MnO2 composite electrode for high energy density electrochemical capacitor. Electrochem Solid-State Lett 7:A425–A4A8

    Article  CAS  Google Scholar 

  30. Prasad KR, Miura N (2004b) Electrochemically synthesized MnO2-based mixed oxides for high performance redox supercapacitors. Electrochem Commun 6:1004–1008

    Article  Google Scholar 

  31. Wei C, Xu C, Li B, Du H, Kang F (2012) Preparation and characterization of manganese dioxides with nano-sized tunnel structures for zinc ion storage. J Phys Chem Solids 73:1487–1491

    Article  CAS  Google Scholar 

  32. Balistrieri L, Murray J (1982) The surface chemistry of δ-MO2 in major ion sea water. Geochim Cosmochim Acta 46:1041–1052

    Article  CAS  Google Scholar 

  33. Catts JG, Langmuir D (1986) Adsorption of Cu, Pb and Zn by δ-MnO2: applicability of the site binding-surface complexation model. Appl Geochem 1:255–264

    Article  CAS  Google Scholar 

  34. Kanungo S, Mahapatra D (1989) Interfacial properties of some hydrous manganese dioxides in 1-1 electrolyte solution. J Colloid Interface Sci 131:103–111

    Article  CAS  Google Scholar 

  35. Murray JW (1974) The surface chemistry of hydrous manganese dioxide. J Colloid Interface Sci 46:357–371

    Article  CAS  Google Scholar 

  36. Nelson YM, Lion LW, Shuler ML, Ghiorse WC (2002) Effect of oxide formation mechanisms on lead adsorption by biogenic manganese (hydr) oxides, iron (hydr) oxides, and their mixtures. Environ Sci Technol 36:421–425

    Article  CAS  Google Scholar 

  37. Loganathan P, Burau RG (1973) Sorption of heavy metal ions by a hydrous manganese oxide. Geochim Cosmochim Acta 37:1277–1293

    Article  CAS  Google Scholar 

  38. Benhaddad L, Makhloufi L, Messaoudi B, Rahmouni K, Takenouti H (2011) Reactivity of nanostructured MnO2 in alkaline medium studied with a microcavity electrode: effect of oxidizing agent. J Mater Sci Technol 27:585–593

    Article  CAS  Google Scholar 

  39. Shinomiya T, Gupta V, Miura N (2006) Effects of electrochemical-deposition method and microstructure on the capacitive characteristics of nano-sized manganese oxide. Electrochim Acta 51:4412–4419

    Article  CAS  Google Scholar 

  40. Suhasini (2013) Effect of deposition method and the surfactant on high capacitance of electrochemically deposited MnO2 on stainless steel substrate. J Electroanal Chem 690:13–18

    Article  CAS  Google Scholar 

  41. Liu E-H, Ding R, Meng X-Y, Tan S-T, Zhou J-C (2007) Potentiodynamical deposition of nanosized manganese oxides as high capacitance electrochemical capacitors. J Mater Sci Mater Electron 18:1179–1182

    Article  CAS  Google Scholar 

  42. Xia H, Xiao W, Lai M, Lu L (2009) Facile synthesis of novel nanostructured MnO2 thin films and their application in supercapacitors. Nanoscale Res Lett 4:1035–1040

    Article  CAS  Google Scholar 

  43. Wang H-E, Qian D (2008) Synthesis and electrochemical properties of α-MnO2 microspheres. Mater Chem Phys 109:399–403

    Article  CAS  Google Scholar 

  44. Ghavami RK, Rafiei Z, Tabatabaei SM (2007) Effects of cationic CTAB and anionic SDBS surfactants on the performance of Zn–MnO2 alkaline batteries. J Power Sources 164:934–946

    Article  CAS  Google Scholar 

  45. Sharma M, Krishnan B, Zachariah S, Shah C (1999) Study to enhance the electrochemical activity of manganese dioxide by doping technique. J Power Sources 79:69–74

    Article  CAS  Google Scholar 

  46. Rogulski Z, Czerwiński A (2003) New cathode mixture for the zinc–manganese dioxide cell. J Power Sources 114:176–179

    Article  CAS  Google Scholar 

  47. Toupin M, Brousse T, Bélanger D (2002) Influence of microstucture on the charge storage properties of chemically synthesized manganese dioxide. Chem Mater 14:3946–3952

    Article  CAS  Google Scholar 

  48. Cherchour N, Deslouis C, Messaoudi B, Pailleret A (2011) pH sensing in aqueous solutions using a MnO2 thin film electrodeposited on a glassy carbon electrode. Electrochim Acta 56:9746–9755

    Article  CAS  Google Scholar 

  49. Benhaddad L, Makhloufi L, Messaoudi B, Rahmouni K, Takenouti H (2007) Étude de la réactivité électrochimique du MnO2 dans KOH 1 M par voltampérométrie et impédance électrochimique. Mater Tech 95:405–410

    Article  CAS  Google Scholar 

  50. Devaraj S, Munichandraiah N (2007) The effect of nonionic surfactant triton X-100 during electrochemical deposition of MnO2 on its capacitance properties. J Electrochem Soc 154:A901–A9A9

    Article  CAS  Google Scholar 

  51. Devaraj S, Munichandraiah N (2005) High capacitance of electrodeposited MnO2 by the effect of a surface-active agent. Electrochem Solid-State Lett 8:A373–A3A7

    Article  CAS  Google Scholar 

  52. Nayak PK, Munichandraiah N (2009) Simultaneous electrodeposition of MnO2 and Mn(OH)2 for supercapacitor studies. Electrochem Solid-State Lett 12:A115–A1A9

    Article  CAS  Google Scholar 

  53. C-C H, Tsou T-W (2002) Ideal capacitive behavior of hydrous manganese oxide prepared by anodic deposition. Electrochem Commun 4:105–109

    Article  Google Scholar 

  54. Rogulski Z, Siwek H, Paleska I, Czerwiński A (2003) Electrochemical behavior of manganese dioxide on a gold electrode. Journal Of. Electroanal Chem 543:175–185

    Article  CAS  Google Scholar 

  55. Lee HY, Kim S, Lee HY (2001) Expansion of active site area and improvement of kinetic reversibility in electrochemical pseudocapacitor electrode. Electrochem Solid-State Lett 4:A19–A22

    Article  CAS  Google Scholar 

  56. Zhao S, Liu T, Hou D, Zeng W, Miao B et al (2015) Controlled synthesis of hierarchical birnessite-type MnO2 nanoflowers for supercapacitor applications. Appl Surf Sci 356:259–265

    Article  CAS  Google Scholar 

  57. Cachet-Vivier C, Tribollet B, Vivier V (2010) Cavity microelectrode for studying manganese dioxide powder as pH sensor. Talanta 82:555–559

    Article  CAS  Google Scholar 

  58. Paul R, Cartwright A (1986) The mechanism of the deposition of manganese dioxide: part II. Electrode impedance studies. J Electroanal Chem Interfacial Electrochem 201:113–122

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bouzid Messaoudi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moulai, F., Cherchour, N., Messaoudi, B. et al. Electrosynthesis and characterization of nanostructured MnO2 deposited on stainless steel electrode: a comparative study with commercial EMD. Ionics 23, 453–460 (2017). https://doi.org/10.1007/s11581-016-1842-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-016-1842-7

Keywords

Navigation