Skip to main content
Log in

Synthesis and electrochemical performance of P2-Na0.67AlxCo1-xO2 (0.0 ≤ × ≤ 0.5) nanopowders for sodium-ion capacitors

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Layered P2-Na0.67Al x Co 1-x O2 (0.0 ≤ × ≤ 0.5) nanopowders were prepared by solution combustion process. These nanopowders were characterized by thermogravimetric analysis (TGA), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy and field emission scanning electron microscopy (FE-SEM) analysis. The electrochemical behaviours of the prepared layered P2-Na0.67Al x Co 1-x O2 nanopowder-based electrodes were investigated by cyclic voltammetry, electrochemical impedances and galvanostatic charge-discharge studies in 1 M Na2SO4 solution. The layered P2-Na0.67Al0.3Co0.7O2 has achieved a high specific capacitance of 260 F g−1 at a constant current density of 1 A g−1. The excellent electrochemical performance of Na0.67Al0.3Co0.7O2 is due to the partial substitution of Al3+ ions for Co3+ ions that leads to decrease in lattice parameter, resulting in the better structural stability during the Na+ ion intercalation/deintercalation reaction process. Moreover, the Na0.67Al0.3Co0.7O2 demonstrates a long cycle life with 80.1 % of its specific capacitance retention even after 5000 continuous charge-discharge process at a constant current density of 1 A g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jian Z, Raju V, Li Z, Xing Z, YS H, Xiulei J (2015) A high-power symmetric Na-ion pseudocapacitor. Adv Funct Mater 25:5778–5785

    Article  CAS  Google Scholar 

  2. Aravindan V, Ulaganathan M, Madhavi S (2016) Research progress in Na-ion capacitors. J Mater Chem A 4:7538–7548

    Article  CAS  Google Scholar 

  3. Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22:587–603

    Article  CAS  Google Scholar 

  4. Fergus JW (2010) Recent developments in cathode materials for lithium ion batteries. J Power Sources 195:939–954

    Article  CAS  Google Scholar 

  5. Palomares V, Serras P, Villaluenga I, Hueso KB, Carretero-González J, Rojo T (2012) Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ Sci 5:5884–5901

    Article  CAS  Google Scholar 

  6. Kim S-W, Seo D-H, Ma X, Ceder G, Kang K (2012) Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv Energy Mater 2:710–721

    Article  CAS  Google Scholar 

  7. Lee DH, Xu J, Meng YS (2013) An advanced cathode for Na-ion batteries with high rate and excellent structural stability. Phys Chem Chem Phys 15:3304–3312

    Article  CAS  Google Scholar 

  8. Chen Z, Augustyn V, Jia X, Xiao Q, Dunn B, Lu Y (2012) High-performance sodium-ion pseudocapacitors based on hierarchically porous nanowire composites. ACS Nano 6:4319–4327

    Article  CAS  Google Scholar 

  9. Ding R, Qi L, Wang H (2013) An investigation of spinel NiCo2O4 as anode for Na-ion capacitors. Electrochim Acta 114:726–735

    Article  CAS  Google Scholar 

  10. Lu K, Song B, Gao X, Dai H, Zhang J, Ma H (2016) High-energy cobalt hexacyanoferrate and carbon micro-spheres aqueous sodium-ion capacitors. J Power Sources 303:347–353

    Article  CAS  Google Scholar 

  11. Lu K, Li D, Gao X, Dai H, Wang N, Ma H (2015) An advanced aqueous sodium-ion supercapacitor with a manganous hexacyanoferrate cathode and a Fe3O4/rGO anode. J Mater Chem A 3:16013–16019

    Article  CAS  Google Scholar 

  12. Zhao J, Zhao L, Dimov N, Okada S, Nishida T (2013) Electrochemical and thermal properties of α-NaFeO2 cathode for Na-ion batteries. J Electrochem Soc 160:A3077–A3081

    Article  CAS  Google Scholar 

  13. Ding J-J, Zhou Y-N, Sun Q, Z-W F (2012) Cycle performance improvement of NaCrO2 cathode by carbon coating for sodium ion batteries. Electrochem Commun 22:85–88

    Article  CAS  Google Scholar 

  14. Berthelot R, Carlier D, Delmas C (2011) Electrochemical investigation of the P2–NaxCoO2 phase diagram. Nat Mater 10:74–80

    Article  CAS  Google Scholar 

  15. Zhou X, Guduru RK, Mohanty P (2013) Synthesis and characterization of Na0.44MnO2 from solution precursors. J Mater Chem A 1:2757

    Article  CAS  Google Scholar 

  16. Olszewski W, Ávila Pérez M, Marini C, Paris E, Wang X, Iwao T, Okubo M, Yamada A, et al. (2016) Temperature dependent local structure of NaxCoO2 cathode material for rechargeable sodium-ion batteries. J Phys Chem C 120:4227–4232

    Article  CAS  Google Scholar 

  17. Slater MD, Kim D, Lee E, Johnson CS (2013) Sodium-Ion Batteries. Adv Funct Mater 23:947–958

    Article  CAS  Google Scholar 

  18. Thorne JS, Dunlap RA, Obrovac MN (2012) Structure and electrochemistry of NaxFexMn1-xO2 (1.0 < =x < =0.5) for Na-ion battery positive electrodes. J Electrochem Soc 160:A361–A367

    Article  Google Scholar 

  19. Delmas C, Fouassier C, Hagenmuller P (1980) Structural classification and properties of the layered oxides. Phys B 99:81–85

    Article  CAS  Google Scholar 

  20. Yuan D, He W, Pei F, Wu F, Wu Y, Qian J, Cao Y, Ai X, et al. (2013) Synthesis and electrochemical behaviors of layered Na0.67[Mn0.65Co0.2Ni0.15]O2 microflakes as a stable cathode material for sodium-ion batteries. J Mater Chem A 1:3895

    Article  CAS  Google Scholar 

  21. Wang X, Tamaru M, Okubo M, Yamada A (2013) Electrode properties of P2 − Na2/3 MnyCo1−yO2 as cathode materials for sodium-ion batteries. J Phys Chem C 117:15545–15551

    Article  CAS  Google Scholar 

  22. Shacklette LW, Jew TR, Townsend L (1985) Rechargeable electrodes from sodium cobalt bronzes. J Electrochem Soc 135:2669–2674

    Article  Google Scholar 

  23. Qu QT, Shi Y, Tian S, Chen YH, Wu YP, Holze R (2009) A new cheap asymmetric aqueous supercapacitor: activated carbon//NaMnO2. J Power Sources 194:1222–1225

    Article  CAS  Google Scholar 

  24. Zhang BH, Liu Y, Chang Z, Yang YQ, Wen ZB, Wu YP (2014) Nanowire K0.19MnO2 from hydrothermal method as cathode material for aqueous supercapacitors of high energy density. Electrochim Acta 130:693–698

    Article  CAS  Google Scholar 

  25. Zhang BH, Liu Y, Chang Z, Yang YQ, Wen ZB, Wu YP, Holze R (2014) Nanowire Na0.35MnO2 from a hydrothermal method as a cathode material for aqueous asymmetric supercapacitors. J Power Sources 253:98–103

    Article  CAS  Google Scholar 

  26. Hou Y, Tang H, Li B, Chang K, Chang Z, Yuan XZ, Wang H (2016) Hexagonal-layered Na0.7MnO2.05 via solvothermal synthesis as an electrode material for aqueous Na-ion supercapacitors. Mater Chem Phys 171:137–144

    Article  CAS  Google Scholar 

  27. Saradha T, Subramania A, Balakrishnan K, Muzhumathi S (2015) Microwave-assisted combustion synthesis of nanocrystalline Sm-doped La2Mo2O9 oxide-ion conductors for SOFC application. Mater Res Bull 68:320–325

    Article  CAS  Google Scholar 

  28. Kumar M, Subramania A, Balakrishnan K (2014) Preparation of electrospun Co3O4 nanofibers as electrode material for high performance asymmetric supercapacitors. Electrochim Acta 149:152–158

    Article  CAS  Google Scholar 

  29. Valefi M, Falamaki C, Ebadzadeh T, Hashjin MS (2007) New insights of the glycine-nitrate process for the synthesis of nano-crystalline 8YSZ. J Am Ceram Soc 90:2008–2014

    Article  CAS  Google Scholar 

  30. Liu X, Zhang N, Ni J, Gao L (2013) Improved electrochemical performance of sol–gel method prepared Na4Mn9O18 in aqueous hybrid Na-ion supercapacitor. J Solid State Electrochem 17:1939–1944

    Article  CAS  Google Scholar 

  31. Lei Y, Li X, Liu L, Ceder G (2014) Synthesis and stoichiometry of di ff erent layered sodium cobalt oxides. Chem Mater 26:5288–5296

    Article  CAS  Google Scholar 

  32. Baster D, Dybko K, Szot M, Świerczek K, Molenda J (2014) Sodium intercalation in NaxCoO2−y—correlation between crystal structure, oxygen nonstoichiometry and electrochemical properties. Solid State Ionics 262:206–210

    Article  CAS  Google Scholar 

  33. Elumalai P, Vasan HN, Munichandraiah N (2004) Microwave synthesis and electrochemical properties of LiCo1−xMxO2 (M = Al and Mg) cathodes for Li-ion rechargeable batteries. J Power Sources 125:77–84

    Article  CAS  Google Scholar 

  34. Shi Y, Liu Y, Yang H, Nie C, Jin R, Li J (2004) Raman spectroscopy study of NaxCoO2 and superconducting NaxCoO2∙yH2O. Phys Rev B 70:052502

    Article  Google Scholar 

  35. Pétrissans X, Bétard A, Giaume D, Barboux P, Dunn B, Sicard L, Piquemal J-Y (2012) Solution synthesis of nanometric layered cobalt oxides for electrochemical applications. Electrochim Acta 66:306–312

    Article  Google Scholar 

  36. Balakrishnan K, Kumar M, Subramania A (2014) Synthesis of polythiophene and its carbonaceous nanofibers as electrode materials for asymmetric supercapacitors. Adv Mater Res 938:151–157

    Article  CAS  Google Scholar 

  37. Khoo E, Wang J, Ma J, Lee PS (2010) Electrochemical energy storage in a β-Na0.33V2O5 nanobelt network and its application for supercapacitors. J Mater Chem 20:8368

    Article  CAS  Google Scholar 

  38. Zhang B-H, Yu F, Zhang L, Wang X, Wen Z, Wu Y-P, Holze R (2014) Na0.35MnO2 /CNT nanocomposite from a hydrothermal method as electrode material for aqueous supercapacitors. Zeitschrift für Anorg und Allg Chemie 640:2908–2913

    Article  CAS  Google Scholar 

  39. Mai L, Li H, Zhao Y, Xu L, Xu X, Luo Y, Zhang Z, Ke W, et al. (2013) Fast ionic diffusion-enabled Nanoflake electrode by spontaneous electrochemical pre-intercalation for high-performance supercapacitor. Sci Rep 3:1–8

    Article  Google Scholar 

  40. Zhu H, Lee KT, Hitz GT, Han X, Li Y, Wan J, Lacey S, Cresce AVW, et al. (2014) Free-standing Na2/3Fe1/2Mn1/2O2@Graphene film for a sodium-ion battery cathode. ACS Appl Mater Interfaces 6:4242–4247

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the DST-Nano Mission, New Delhi (SR/NM/NS-25/2010) and UGC, New Delhi (41-1002/ 2012 SR) for the financial supports. A part of this research work has been presented in the 4th International Conferences on Advances in Energy Research (ICAER-2013) held at IIT-B, Mumbai, India, on Dec. 10-12, 2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subramania Angaiah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, K., Kirubasankar, B. & Angaiah, S. Synthesis and electrochemical performance of P2-Na0.67AlxCo1-xO2 (0.0 ≤ × ≤ 0.5) nanopowders for sodium-ion capacitors. Ionics 23, 731–739 (2017). https://doi.org/10.1007/s11581-016-1821-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-016-1821-z

Keywords

Navigation