Skip to main content
Log in

Fabrication of bimetallic Pt/Pd nanoparticles on 2-thiolbenzimidazole functionalized reduced graphene oxide for methanol oxidation

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this study, an electrocatalyst based on 2-thiolbenzimidazole (TBI) functionalized reduced graphene oxide (rGO) with platinum and palladium nanoparticles (Pt-PdNPs) was synthesized. The successful synthesis of nanomaterials and the prepared glassy carbon electrode (GCE) surfaces were confirmed by transmission electron microscope, X-ray photo electron spectroscopy, scanning electron microscope, electrochemical impedance spectroscopy and X-ray diffraction method. The effective surface areas of TBIrGO/GCE, PdNPs/TBIrGO/GCE, PtNPs/TBIrGO/GCE and Pt-PdNPs/TBIrGO/GCE were calculated to be 324, 578, 667 and 1189 cm2/mg, respectively. According to the results, the electrochemical surface area of the Pt-PdNPs/TBIrGO is 3.67, 2.06 and 1.78 times higher than those of TBIrGO, PdNPs/TBIrGO and PtNPs/TBIrGO, respectively. The Pt-PdNPs/TBIrGO/GCE also exhibited higher peak current for methanol oxidation than those of comparable TBIrGO/GCE, PdNPs/TBIrGO/GCE, PtNPs/TBIrGO/GCE modified GCEs, thus providing evidence for its higher electro-catalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gupta VK, Yola ML, Atar N, Üstündağ Z, Solak AO (2014) Electrochemical studies on graphene oxide-supported metallic and bimetallic nanoparticles for fuel cell applications. J Mol Liq 191:172–176. doi:10.1016/j.molliq.2013.12.014

    Article  Google Scholar 

  2. Ahn K, Kim M, Kim K, Ju H, Oh I, Kim J (2015) Fabrication of low-methanol-permeability sulfonated poly(phenylene oxide) membranes with hollow glass microspheres for direct methanol fuel cells. J Power Sources 276:309–319. doi:10.1016/j.jpowsour.2014.11.114

    Article  CAS  Google Scholar 

  3. Atar N, Eren T, Yola ML, Karimi-Maleh H, Demirdogen B (2015) Magnetic iron oxide and iron oxide@gold nanoparticle anchored nitrogen and sulfur-functionalized reduced graphene oxide electrocatalyst for methanol oxidation. RSC Advances 5(33):26402–26409. doi:10.1039/C5RA03735B

    Article  CAS  Google Scholar 

  4. Rashid M, Jun T-S, Jung Y, Kim YS (2015) Bimetallic core–shell Ag@Pt nanoparticle-decorated MWNT electrodes for amperometric H2 sensors and direct methanol fuel cells. Sensors Actuators B Chem 208:7–13. doi:10.1016/j.snb.2014.11.005

    Article  CAS  Google Scholar 

  5. Yola ML, Eren T, Atar N, Wang S (2014) Adsorptive and photocatalytic removal of reactive dyes by silver nanoparticle-colemanite ore waste. Chem Eng J 242:333–340. doi:10.1016/j.cej.2013.12.086

    Article  CAS  Google Scholar 

  6. Yola ML, Atar N (2014) A novel voltammetric sensor based on gold nanoparticles involved in p-aminothiophenol functionalized multi-walled carbon nanotubes: application to the simultaneous determination of quercetin and rutin. Electrochim Acta 119:24–31. doi:10.1016/j.electacta.2013.12.028

    Article  CAS  Google Scholar 

  7. Gupta VK, Yola ML, Eren T, Kartal F, Çağlayan MO, Atar N (2014) Catalytic activity of Fe@Ag nanoparticle involved calcium alginate beads for the reduction of nitrophenols. J Mol Liq 190:133–138. doi:10.1016/j.molliq.2013.10.022

    Article  CAS  Google Scholar 

  8. Yola ML, Eren T, Atar N (2014) A novel efficient photocatalyst based on TiO2 nanoparticles involved boron enrichment waste for photocatalytic degradation of atrazine. Chem Eng J 250:288–294. doi:10.1016/j.cej.2014.03.116

    Article  CAS  Google Scholar 

  9. Yola ML, Eren T, Atar N (2015) A sensitive molecular imprinted electrochemical sensor based on gold nanoparticles decorated graphene oxide: application to selective determination of tyrosine in milk. Sensors Actuators B Chem 210:149–157. doi:10.1016/j.snb.2014.12.098

    Article  CAS  Google Scholar 

  10. Sanghavi B, Wolfbeis O, Hirsch T, Swami N (2015) Nanomaterial-based electrochemical sensing of neurological drugs and neurotransmitters. Microchim Acta 182(1–2):1–41. doi:10.1007/s00604-014-1308-4

    Article  CAS  Google Scholar 

  11. Sanghavi BJ, Srivastava AK (2010) Simultaneous voltammetric determination of acetaminophen, aspirin and caffeine using an in situ surfactant-modified multiwalled carbon nanotube paste electrode. Electrochim Acta 55(28):8638–8648. doi:10.1016/j.electacta.2010.07.093

    Article  CAS  Google Scholar 

  12. Sanghavi BJ, Mobin SM, Mathur P, Lahiri GK, Srivastava AK (2013) Biomimetic sensor for certain catecholamines employing copper(II) complex and silver nanoparticle modified glassy carbon paste electrode. Biosens Bioelectron 39(1):124–132. doi:10.1016/j.bios.2012.07.008

    Article  CAS  Google Scholar 

  13. Sanghavi BJ, Varhue W, Chávez JL, Chou C-F, Swami NS (2014) Electrokinetic preconcentration and detection of neuropeptides at patterned graphene-modified electrodes in a nanochannel. Anal Chem 86(9):4120–4125. doi:10.1021/ac500155g

    Article  CAS  Google Scholar 

  14. Sanghavi BJ, Sitaula S, Griep MH, Karna SP, Ali MF, Swami NS (2013) Real-time electrochemical monitoring of adenosine triphosphate in the picomolar to micromolar range using graphene-modified electrodes. Anal Chem 85(17):8158–8165. doi:10.1021/ac4011205

    Article  CAS  Google Scholar 

  15. Kim S, Sohn H-J, Park S-J (2010) Preparation and characterization of carbon-related materials supports for catalysts of direct methanol fuel cells. Curr Appl Phys 10(4):1142–1147. doi:10.1016/j.cap.2010.01.016

    Article  Google Scholar 

  16. Yola ML, Eren T, Atar N (2014) A novel and sensitive electrochemical DNA biosensor based on Fe@Au nanoparticles decorated graphene oxide. Electrochim Acta 125:38–47. doi:10.1016/j.electacta.2014.01.074

    Article  CAS  Google Scholar 

  17. Yola ML, Gupta VK, Eren T, Şen AE, Atar N (2014) A novel electro analytical nanosensor based on graphene oxide/silver nanoparticles for simultaneous determination of quercetin and morin. Electrochim Acta 120:204–211. doi:10.1016/j.electacta.2013.12.086

    Article  CAS  Google Scholar 

  18. Yola ML, Eren T, Atar N (2014) Molecularly imprinted electrochemical biosensor based on Fe@Au nanoparticles involved in 2-aminoethanethiol functionalized multi-walled carbon nanotubes for sensitive determination of cefexime in human plasma. Biosens Bioelectron 60:277–285. doi:10.1016/j.bios.2014.04.045

    Article  CAS  Google Scholar 

  19. Gupta VK, Atar N, Yola ML, Üstündağ Z, Uzun L (2014) A novel magnetic Fe@Au core–shell nanoparticles anchored graphene oxide recyclable nanocatalyst for the reduction of nitrophenol compounds. Water Res 48:210–217. doi:10.1016/j.watres.2013.09.027

    Article  CAS  Google Scholar 

  20. Eren T, Atar N, Yola ML, Karimi-Maleh H, Çolak AT, Olgun A (2015) Facile and green fabrication of silver nanoparticles on a polyoxometalate for Li-ion battery. Ionics 21(8):2193–2199. doi:10.1007/s11581-015-1409-z

    Article  CAS  Google Scholar 

  21. Sanghavi BJ, Hirsch G, Karna SP, Srivastava AK (2012) Potentiometric stripping analysis of methyl and ethyl parathion employing carbon nanoparticles and halloysite nanoclay modified carbon paste electrode. Anal Chim Acta 735:37–45. doi:10.1016/j.aca.2012.05.029

    Article  CAS  Google Scholar 

  22. Gu CD, Huang ML, Ge X, Zheng H, Wang XL, Tu JP (2014) NiO electrode for methanol electro-oxidation: mesoporous vs. nanoparticulate. Int J Hydrog Energy 39(21):10892–10901. doi:10.1016/j.ijhydene.2014.05.028

    Article  CAS  Google Scholar 

  23. Atar N, Eren T, Yola ML, Gerengi H, Wang S (2015) Fe@Ag nanoparticles decorated reduced graphene oxide as ultrahigh capacity anode material for lithium-ion battery. Ionics. doi:10.1007/s11581-015-1520-1

    Google Scholar 

  24. Yang G, Zhou Y, Pan H-B, Zhu C, Fu S, Wai CM, Du D, Zhu J-J, Lin Y (2016) Ultrasonic-assisted synthesis of Pd–Pt/carbon nanotubes nanocomposites for enhanced electro-oxidation of ethanol and methanol in alkaline medium. Ultrason Sonochem 28:192–198. doi:10.1016/j.ultsonch.2015.07.021

    Article  CAS  Google Scholar 

  25. Gupta VK, Yola ML, Özaltın N, Atar N, Üstündağ Z, Uzun L (2013) Molecular imprinted polypyrrole modified glassy carbon electrode for the determination of tobramycin. Electrochim Acta 112:37–43. doi:10.1016/j.electacta.2013.08.132

    Article  CAS  Google Scholar 

  26. Yola ML, Atar N, Qureshi MS, Üstündağ Z, Solak AO (2012) Electrochemically grafted etodolac film on glassy carbon for Pb(II) determination. Sensors Actuators B Chem 171–172:1207–1215. doi:10.1016/j.snb.2012.06.082

    Article  Google Scholar 

  27. Wojcieszak R, Genet MJ, Eloy P, Ruiz P, Gaigneaux EM (2010) Determination of the size of supported Pd nanoparticles by X-ray photoelectron spectroscopy. Comparison with X-ray diffraction, transmission electron microscopy, and H2 chemisorption methods. J Phys Chem C 114(39):16677–16684. doi:10.1021/jp106956w

    Article  CAS  Google Scholar 

  28. Dablemont C, Lang P, Mangeney C, Piquemal J-Y, Petkov V, Herbst F, Viau G (2008) FTIR and XPS study of Pt nanoparticle functionalization and interaction with alumina. Langmuir 24(11):5832–5841. doi:10.1021/la7028643

    Article  CAS  Google Scholar 

  29. Bradder P, Ling SK, Wang S, Liu S (2011) Dye adsorption on layered graphite oxide. J Chem Eng Data 56(1):138–141. doi:10.1021/je101049g

    Article  CAS  Google Scholar 

  30. Liu Y, Liu L, Shan J, Zhang J (2015) Electrodeposition of palladium and reduced graphene oxide nanocomposites on foam-nickel electrode for electrocatalytic hydrodechlorination of 4-chlorophenol. J Hazard Mater 290:1–8. doi:10.1016/j.jhazmat.2015.02.016

    Article  CAS  Google Scholar 

  31. Yang B, Bin D, Wang H, Zhu M, Yang P, Du Y (2015) High quality Pt-graphene nanocomposites for efficient electrocatalytic nitrite sensing. Colloids Surf A Physicochem Eng Asp 481:43–50. doi:10.1016/j.colsurfa.2015.04.027

    Article  CAS  Google Scholar 

  32. Gupta VK, Yola ML, Atar N, Solak AO, Uzun L, Üstündağ Z (2013) Electrochemically modified sulfisoxazole nanofilm on glassy carbon for determination of cadmium(II) in water samples. Electrochim Acta 105:149–156. doi:10.1016/j.electacta.2013.04.136

    Article  CAS  Google Scholar 

  33. Su L, Jia W, Li C-M, Lei Y (2014) Mechanisms for enhanced performance of platinum-based electrocatalysts in proton exchange membrane fuel cells. ChemSusChem 7(2):361–378. doi:10.1002/cssc.201300823

    Article  CAS  Google Scholar 

  34. Tong YY, Gu CD, Zhang JL, Huang ML, Tang H, Wang XL, Tu JP (2015) Three-dimensional astrocyte-network Ni-P-O compound with superior electrocatalytic activity and stability for methanol oxidation in alkaline environments. J Mater Chem A 3(8):4669–4678. doi:10.1039/C4TA06697A

    Article  CAS  Google Scholar 

  35. Atar N, Eren T, Demirdögen B, Yola ML, Çağlayan MO (2015) Silver, gold, and silver@gold nanoparticle-anchored l-cysteine-functionalized reduced graphene oxide as electrocatalyst for methanol oxidation. Ionics 21(8):2285–2293. doi:10.1007/s11581-015-1395-1

    Article  CAS  Google Scholar 

  36. Chen D-J, Zhang Q-L, Feng J-X, Ju K-J, Wang A-J, Wei J, Feng J-J (2015) One-pot wet-chemical co-reduction synthesis of bimetallic gold–platinum nanochains supported on reduced graphene oxide with enhanced electrocatalytic activity. J Power Sources 287:363–369. doi:10.1016/j.jpowsour.2015.04.080

    Article  CAS  Google Scholar 

  37. Duan J, Zhang X, Yuan W, Chen H, Jiang S, Liu X, Zhang Y, Chang L, Sun Z, Du J (2015) Graphene oxide aerogel-supported Pt electrocatalysts for methanol oxidation. J Power Sources 285:76–79. doi:10.1016/j.jpowsour.2015.03.064

    Article  CAS  Google Scholar 

  38. Zhang L, Wang H, Li X, Xia F, Liu Y, Xu X, Gao J, Xing F (2015) One-step synthesis of palladium-gold-silver ternary nanoparticles supported on reduced graphene oxide for the electrooxidation of methanol and ethanol. Electrochim Acta 172:42–51. doi:10.1016/j.electacta.2014.11.152

    Article  CAS  Google Scholar 

  39. Ma J, Wang L, Mu X, Cao Y (2015) Enhanced electrocatalytic activity of Pt nanoparticles supported on functionalized graphene for methanol oxidation and oxygen reduction. J Colloid Interface Sci 457:102–107. doi:10.1016/j.jcis.2015.06.031

    Article  CAS  Google Scholar 

  40. Vu THT, Tran TTT, Le HNT, Tran LT, Nguyen PHT, Nguyen HT, Bui NQ (2015) Solvothermal synthesis of Pt -SiO2/graphene nanocomposites as efficient electrocatalyst for methanol oxidation. Electrochim Acta 161:335–342. doi:10.1016/j.electacta.2015.02.100

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Onur Akyıldırım or Necip Atar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akyıldırım, O., Kotan, G., Yola, M.L. et al. Fabrication of bimetallic Pt/Pd nanoparticles on 2-thiolbenzimidazole functionalized reduced graphene oxide for methanol oxidation. Ionics 22, 593–600 (2016). https://doi.org/10.1007/s11581-015-1572-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-015-1572-2

Keywords

Navigation