Skip to main content
Log in

Effects of yttrium ion doping on electrochemical performance of LiFePO4/C cathodes for lithium-ion battery

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The olivine-type LiFe1-x Y x PO4/C (x = 0, 0.01, 0.02, 0.03, 0.04, 0.05) products were prepared through liquid-phase precipitation reaction combined with the high-temperature solid-state method. The structure, morphology, and electrochemical performance of the samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), energy-dispersive spectroscopy (EDS), galvanostatic charge-discharge, cyclic voltammetry, and electrochemical impedance spectroscopy (EIS). We found that the small amount of Y3+ ion-doped can keep the microstructure of LiFePO4, modify the particle morphology, decrease charge transfer resistance, and enhance exchange current density, thus enhance the electrochemical performance of the LiFePO4/C. However, the large doping content of Y3+ ion cannot be completely doped into LiFePO4 lattice, but existing partly in the form of YPO4. The electrochemical performance of LiFePO4/C was restricted owing to YPO4. Among all the doped samples, LiFe0.98Y0.02PO4/C showed the best electrochemical performance. The LiFe0.98Y0.02PO4/C sample exhibited the initial discharge capacity of 166.7, 155.8, 148.2, 139.8, and 121.1 mAh g−1 at a rate of 0.2, 0.5, 1, 2, and 5 C, respectively. And, the discharge capacity of the material was 119.6 mAh g−1 after 100 cycles at 5 C rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) J Electrochem Soc 144:1188–1194

    Article  CAS  Google Scholar 

  2. Yuan LX, Wang ZH, Zhang WX, Hu XL, Chen JT, Huang YH, Goodenough JB (2011) Energy Environ Sci 4:269–284

    Article  CAS  Google Scholar 

  3. Cheng F, Wang S, Lu AH, Li WC (2013) J Power Sources 229:249–257

    Article  CAS  Google Scholar 

  4. Avci E, Mazman M, Uzun D, Bicer E, Sener T (2013) J Power Sources 240:328–337

    Article  CAS  Google Scholar 

  5. Xu G, Li F, Tao Z, Wei X, Liu Y, Li X, Ren Z, Shen G, Han G (2014) J Power Sources 246:696–702

    Article  CAS  Google Scholar 

  6. Yao B, Ding Z, Zhang J, Feng X, Yin L (2014) J Solid State Chem 216:9–12

    Article  CAS  Google Scholar 

  7. Huang G, Li W, Sun H, Wang J, Zhang J, Jiang H, Zhai F (2013) Electrochim Acta 97:92–98

    Article  CAS  Google Scholar 

  8. Chen Z, Du B, Xu M, Zhu H, Li L, Wang W (2013) Electrochim Acta 109:262–268

    Article  CAS  Google Scholar 

  9. Qin G, Ma Q, Wang C (2014) Electrochim Acta 115:407–415

    Article  CAS  Google Scholar 

  10. Zhou Y, Wang J, Hu Y, OHayre R, Shao Z (2010) Chem Commun 46:7151–7153

    Article  CAS  Google Scholar 

  11. Zhao B, Yu X, Cai R, Ran R, Wang H, Shao Z (2012) J Mater Chem 22:2900–2907

    Article  CAS  Google Scholar 

  12. Zhang X, Zhang X, He W, Yue Y, Liu H, Ma J (2012) Chem Commun 48:10093–10095

    Article  CAS  Google Scholar 

  13. Wang J, Yang J, Tang Y, Li R, Liang G, Sham TK, Sun X (2013) J Mater Chem A 1:1579–1586

    Article  CAS  Google Scholar 

  14. Yang J, Wang J, Tang Y, Wang D, Li X, Hu Y, Li R, Liang G, Sham TK, Sun X (2013) Energy Environ Sci 6:1521–1528

    Article  CAS  Google Scholar 

  15. Ji H, Zhang L, Pettes MT, Li H, Chen S, Shi L, Piner R, Ruoff RS (2012) Nano Lett 12:2446–2451

    Article  CAS  Google Scholar 

  16. Qin G, Wu Q, Zhao J, Ma Q, Wang C (2014) J Power Sources 248:588–595

    Article  CAS  Google Scholar 

  17. Gong C, Xue Z, Wang X, Zhou XP, Xie XL, Mai YW (2014) J Power Sources 246:260–268

    Article  CAS  Google Scholar 

  18. Li J, Qu Q, Zhang L, Zheng H (2013) J Alloys Compd 579:377–383

    Article  CAS  Google Scholar 

  19. Kang B, Ceder G (2009) Nature 458:190–193

    Article  CAS  Google Scholar 

  20. Yang R, Song X, Zhao M, Wang F (2009) J Alloys Compd 468:365–369

    Article  CAS  Google Scholar 

  21. Zhang Q, Wang S, Zhou Z, Ma G, Jiang W, Guo X, Zhao S (2011) Solid State Ionics 191:40–44

    Article  CAS  Google Scholar 

  22. Li C, Hu N, Wang C, Kang X, Wumair T, Han Y (2011) J Alloys Compd 509:1897–1900

    Article  CAS  Google Scholar 

  23. Wang Y, Yang Y, Hu X, Yang Y, Shao H (2009) J Alloys Compd 481:590–594

    Article  CAS  Google Scholar 

  24. Sun CS, Zhou Z, Xu ZG, Wang DG, Wei JP, Bian XK, Yan J (2009) J Power Sources 193:841–845

    Article  CAS  Google Scholar 

  25. Bilecka I, Hintennach A, Rossell MD, Xie D, Novak P, Niederberger M (2011) J Mater Chem 21:5881–5890

    Article  CAS  Google Scholar 

  26. Yue H, Wu Z, Li L (2014) J Alloys Compd 583:1–6

    Article  CAS  Google Scholar 

  27. Huang Y, Xu Y, Yang X (2013) Electrochim Acta 113:156–163

    Article  CAS  Google Scholar 

  28. Ma Z, Fan Y, Shao G, Wang L, Song J, Wang G, Liu T (2014) Electrochim Acta 139:256–263

    Article  CAS  Google Scholar 

  29. Ma Z, Shao G, Wang G, Zhang Y, Du J (2014) J Solid State Chem 210:232–237

    Article  CAS  Google Scholar 

  30. Yin X, Huang K, Liu S, Wang H, Wang H (2010) J Power Sources 195:4308–4312

    Article  CAS  Google Scholar 

  31. Cho YD, Fey GTK, Kao HM (2008) J Solid State Electrochem 12:815–823

    Article  CAS  Google Scholar 

  32. Hong J, Wang XL, Wang Q, Omenya F, Chernova NA, Whittingham MS, Graetz J (2012) J Phys Chem C 116:20787–20793

    Article  CAS  Google Scholar 

  33. Saiful Islam M, Driscoll DJ, Fisher CAJ, Slater PR (2005) Chem Mater 17:5085–5092

    Article  Google Scholar 

  34. Huang Y, Liu H, Lu YC, Hou Y, Li Q (2015) J Power Sources 284:236–244

    Article  CAS  Google Scholar 

  35. Miao C, Bai P, Jiang Q, Sun S, Wang X (2014) J Power Sources 246:232–238

    Article  CAS  Google Scholar 

  36. Vu A, Stein A (2014) J Power Sources 245:48–58

    Article  CAS  Google Scholar 

  37. Liu H, Li C, Cao Q, Wu YP, Holze R (2008) J Solid State Electrochem 12:1017–1020

    Article  CAS  Google Scholar 

  38. Yan C, Zhao X, Guo R (2010) Electrochim Acta 55:922–926

    Article  Google Scholar 

  39. Wang L, Ma P, Zhang Y, Gao C, Yan C (2009) J Salt Lake Res 17:52–55

    Google Scholar 

Download references

Acknowledgments

We are grateful for the financial support from the Natural Science Foundation of Hebei Province (B2012203069) and support from education department of Hebei province on natural science research key projects for institution of higher learning (ZH2011228).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junming Chen or Guangjie Shao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Wang, X., Ma, Z. et al. Effects of yttrium ion doping on electrochemical performance of LiFePO4/C cathodes for lithium-ion battery. Ionics 21, 2701–2708 (2015). https://doi.org/10.1007/s11581-015-1467-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-015-1467-2

Keywords

Navigation