Skip to main content
Log in

Synthesis, characterization, and electrochemical performances of alpha nickel hydroxide by coprecipitating Sn2+

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Sn-substituted α-Ni(OH)2 for Ni-MH battery is prepared by supersonic coprecipitating method, using NiSO4 as nickel ion source and SnSO4 as doping material. The crystal structure and morphology of the samples were characterized with X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM). The results demonstrate that the crystal structure of all samples changes from α/β mixed phase to pure α phase and the interlayer spacing becomes larger with more Sn2+ substitution for Ni2+, while the agglomeration particle size decreases initially and then increases. The electrochemical performances of the prepared nickel hydroxide were characterized by cyclic voltammetry (CV) and charge-discharge tests. The results reveal that 15 % Sn-substituted α-Ni(OH)2 has best electrochemical performance, such as best reaction reversibility, highest proton diffusion coefficient, the maximum discharge capacity (303.6 mAh/g at 0.2 C), and the maximum capacity retention (maintaining 90.5 % after 30 cycles at 0.2 C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kazimirov VY, Smirnov MB, Bourgeois L, Guerlou-Demourgues L, Servant L, Balagurov AM, Natkaniec I, Khasanova NR, Antipov EV (2010) Atomic structure and lattice dynamics of Ni and Mg hydroxides. Solid State Ionics 181:1764–1770

    Article  CAS  Google Scholar 

  2. Xu LP, Ding YS, Cheng CH, Zhao LL, Rimkus C, Joesten R, Suib SL (2008) 3D flowerlike alpha-nickel hydroxide with enhanced electrochemical activity synthesized by microwave-assisted hydrothermal method. Chem Mater 20:308–316

    Article  CAS  Google Scholar 

  3. Takasaki T, Nishimura K, Mukai T, Iwaki T, Tsutsumi K, Sakai T (2013) Fiber-type Ni(OH)2 electrode with alpha/gamma phase transformation: high-capacity and high-voltage performances of nickel-metal hydride battery. J Electrochem Soc 160:A564–A568

    Article  CAS  Google Scholar 

  4. Deki S, Hosokawa A, Béléké AB, Mizuhata M (2009) α-Ni(OH)2 thin films fabricated by liquid phase deposition method. Thin Solid Films 517:1546–1554

    Article  CAS  Google Scholar 

  5. Han TA, Tu JP, Wu JB, Li Y, Yuan YF (2006) Electrochemical properties of biphase Ni(OH)2 electrodes for secondary rechargeable Ni/MH batteries. J Electrochem Soc 153:A738–A742

    Article  CAS  Google Scholar 

  6. Li YW, Yao JH, Zhu YX, Zou ZG, Wang HB (2012) Synthesis and electrochemical performance of mixed phase alpha/beta nickel hydroxide. J Power Sources 203:177–183

    Article  CAS  Google Scholar 

  7. Zhang WK, Xia XH, Huang H, Gan YP, Wu JB, Tu JP (2008) High-rate discharge properties of nickel hydroxide/carbon composite as positive electrode for Ni/MH batteries. J Power Sources 184:646–651

    Article  CAS  Google Scholar 

  8. Wu JB, Tu JP, Wang XL, Zhang WK (2007) Synthesis of nanoscale CoO particles and their effect on the positive electrodes of nickel-metal hydride batteries. Int J Hydrog Energy 32:606–610

    Article  CAS  Google Scholar 

  9. Bardé F, Palacín MR, Beaudoin B, Tarascon JM (2005) Ozonation: a unique route to prepare nickel oxyhydroxides. Synthesis optimization and reaction mechanism study. Chem Mater 17:470–476

    Article  Google Scholar 

  10. Hu WK, Noréus D (2003) Alpha nickel hydroxides as lightweight nickel electrode materials for alkaline rechargeable cells. Chem Mater 15:974–978

    Article  CAS  Google Scholar 

  11. Liu LP, Zhou ZT, Peng CH (2008) Sonochemical intercalation synthesis of nano gamma-nickel oxyhydroxide: structure and electrochemical properties. Electrochim Acta 54:434–441

    Article  CAS  Google Scholar 

  12. Caravaggio GA, Christian D, Wronski Z (2001) Synthesis, stability and electrochemical properities of NiAl and NiV layered double hydroxide. J Mater Chem 11:912–921

    Article  CAS  Google Scholar 

  13. Guerlou-Demourgues L, Tessier C, Bernard P, Delmas C (2004) Influence of substituted zinc on stacking faults in nickel hydroxide. J Mater Chem 14:2449–2454

    Article  Google Scholar 

  14. Béléké AB, Higuchi E, Inoue H, Mizuhata M (2014) Durability of nickel-metal hydride (Ni-MH) battery cathode using nickel-aluminum layered double hydroxide/carbon (Ni-Al LDH/C) composite. J Power Sources 247:572–578

    Article  Google Scholar 

  15. Jayashree RS, Vishnu Kamath P (2002) Layered double hydroxides of Ni with Cr and Mn candidate electrode materials for alkaline secondary cells. J Power Sources 20:120–124

    Article  Google Scholar 

  16. Li YW, Yao JH, Liu CJ, Zhao WM, Deng WX, Zhong SK (2010) Effect of interlayer anions on the electrochemical performance of Al-substituted α-type nickel hydroxide electrodes. Int J Hydrog Energy 35:2539–2545

    Article  CAS  Google Scholar 

  17. Xu QS, Zhu YJ, Han QY, Zhao RD, Zhuang YH, Liu YL, Zhang SJ, Miao CC (2014) Preparation of Yb-substituted α-Ni(OH)2 and its physicochemical properties. J Alloys Compd 584:1–6

    Article  CAS  Google Scholar 

  18. Zhang ZJ, Zhu YJ, Bao J, Lin XR, Zheng HZ (2011) Electrochemical performance of multi-element doped α-nickel hydroxide prepared by supersonic co-precipitation method. J Alloys Compd 509:7034–7037

    Article  CAS  Google Scholar 

  19. Bao J, Zhu YJ, Zhang ZJ, Xu QS, Zhao WR, Chen J, Zhang W, Han QY (2013) Structure and electrochemical properties of nanometer Cu substituted α-nickel hydroxide. Mater Res Bull 48:422–428

    Article  CAS  Google Scholar 

  20. Chen H, Wang JM, Zhao YL, Zhang JQ, Cao CN (2005) Electrochemical performance of Zn-substituted Ni(OH)2 for alkaline rechargeable batteries. J Solid State Electrochem 9:421–428

    Article  CAS  Google Scholar 

  21. Guerlou-Demourgues L, Fournès L, Delmas C (1996) In stitu57Fe mössbauer spectroscopy study of the electrochemical behavior of an iron-substituted nickel hydroxide electrode. J Electrochem Soc 143:3083–3088

    Article  CAS  Google Scholar 

  22. Guerlou-Demourgues L, Delmas C (1996) Electrochemical behavior of the manganese-substituted nickel hydroxide. J Electrochem Soc 143:561–566

    Article  CAS  Google Scholar 

  23. Gao T, Jelle BP (2013) Paraotwayite-type α-Ni(OH)2 nanowires: structural, optical, and electrochemical properties. J Phys Chem C 117:17294–17302

    Article  CAS  Google Scholar 

  24. Zhang K, Wang JB, Lu XL, Li LY, Tang YW, Jia ZY (2009) Structural evolution of hydrothermal-synthesized Ni(SO4)0.3(OH)1.4 nanobelts during ex situ heat treatment and in situ electron irradiation. J Phys Chem C 113:142–147

    Article  CAS  Google Scholar 

  25. Qin LW, Hu M, Gao XR, Lei LX (2011) Effect of calcium hydroxide on the electrochemical performance of a [Ni4Al(OH)10]OH electrode. J Solid State Electrochem 15:405–412

    Article  CAS  Google Scholar 

  26. Re JX, Zhou Z, Gao XP, Yan J (2006) Preparation of porous spherical α-Ni(OH)2 and enhancement of high-temperature electrochemical performances through yttrium addition. Electrochim Acta 52:1120–1126

    Article  Google Scholar 

  27. Ren JX, Yan J, Zhou Z, Wang X, Gao XP (2006) High-temperature electrochemical performance of spherical Ni(OH)2 coated with Lu(OH)3. Int J Hydrog Energy 31:71–76

    Article  CAS  Google Scholar 

  28. Gao XH, Lei LX, Hu M, Qin LW, Sun YM (2009) Structure, morphology and electrochemical performance of Zn-doped [Ni4Al(OH)10]OH. J Power Sources 191:662–668

    Article  CAS  Google Scholar 

  29. He XM, Li JJ, Cheng HW, Jiang CY, Wan CR (2005) Controlled crystallization and granulation of nano-scale β-Ni(OH)2 cathode materials for high power Ni-MH batteries. J Power Sources 152:285–290

    Article  CAS  Google Scholar 

  30. Zhang SM, Zeng CH (2009) Self-assembled hollow spheres of β-Ni(OH)2 and their derived nanomaterials. Chem Mater 21:871–883

    Article  CAS  Google Scholar 

  31. Béléké AB, Mizuhata M (2010) Electrochemical properities of nickel-aluminum layered double hydroxide/carbon composite fabricated by liquid phase deposition. J Power Sources 195:7669–7676

    Article  Google Scholar 

  32. Hu WK, Gao XP, Dag N, Trygve B, Nils KN (2006) Evolution of nano-crystal sized α-nickel hydroxide as an electrode material for alkaline rechargeable cells. J Power Sources 160:704–710

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 11304045), the Guangdong Province National Natural Science Foundation of China (No. S2012010009955), and the Science and Technology Program of Guangzhou City of China (No. 2013j4100011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanjuan Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, C., Zhu, Y., Huang, L. et al. Synthesis, characterization, and electrochemical performances of alpha nickel hydroxide by coprecipitating Sn2+ . Ionics 21, 2295–2302 (2015). https://doi.org/10.1007/s11581-015-1387-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-015-1387-1

Keywords

Navigation