Skip to main content
Log in

Ionothermal synthesis and enhanced electrochemical performance of nanostructure Cr-doped LiMn2O4 for lithium-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

LiCr x Mn2−x O4 (x = 0, 0.02, 0.05, 0.12) materials were effectively synthesized by imidazolium-based ionic liquid as reaction medium at ambient pressure. The morphologies of Cr-doped LiMn2O4 via calcination were characterized by scanning electron microscopy (SEM). SEM reveals that the LiCr0.12Mn1.88O4 sample has regular nanostructure and a uniform particle size of 50–100 nm. Among the four samples prepared in ionic liquid, the charge/discharge tests indicate that LiCr0.12Mn1.88O4 presents the best performance of rate capacity and cycle stability. A typical LiCr0.12Mn1.88O4 delivers the initial discharge capacity of 129.6 mAh g−1 and behaves a quite slow capacity fading with 96.8 % of initial capacity remained after 200 cycles at 0.5 C in the voltage range of 3.4–4.3 V. The improved electrochemical performance can be attributed to Cr doping and recyclable ionothermal method. Furthermore, this ionothermal synthesis is believed to provide a new reaction route for lithium-ion battery materials with mild reaction conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. He L, Zhang S, Wei X, Du Z, Liu G, Xing Y (2012) Synthesis and electrochemical performance of spinel-type LiMn2O4 using γ-MnOOH rods as self-template for lithium ion battery. J Power Sources 220:228–235

    Article  CAS  Google Scholar 

  2. Aricò AS, Bruce P, Scrosati B, Tarascon JM, Van Schalkwijk W (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377

    Article  Google Scholar 

  3. Meng H, Huang B, Yin J, Yao X, Xu X (2014) Synthesis and electrochemical properties of LiNi1/3Co1/3Mn1/3O2 cathodes in lithium-ion and all-solid-state lithium batteries. Ionics. doi:10.1007/s11581-014-1152-x

    Google Scholar 

  4. Fey GTK, Lu CZ, Prem Kumar T (2003) Solid-state synthesis and electrochemical characterization of LiMyCr0.5-yMn1.5O4(M = Fe or Al; 0.0 < y < 0.4) spinels. Mater Chem Phys 80:309–318

    Article  CAS  Google Scholar 

  5. Wang J, Zhang Q, Li X, Wang Z, Zhang K, Guo H, Yan G, Huang B, He Z (2013) A graphite functional layer covering the surface of LiMn2O4 electrode to improve its electrochemical performance. Electrochem Commun 36:6–9

    Article  Google Scholar 

  6. Wang J, Zhang Q, Li X, Wang Z, Guo H, Xu D, Zhang K (2014) Sputtering graphite coating to improve the elevated-temperature cycling ability of the LiMn2O4 electrode. Phys Chem Chem Phys 16:16021–16029

    Article  CAS  Google Scholar 

  7. Zhou WJ, Bao SJ, He BL, Liang YY, Li HL (2006) Synthesis and electrochemical properties of LiAl0.05Mn1.95O4 by the ultrasonic assisted rheological phase method. Electrochim Acta 51:4701–4708

    Article  CAS  Google Scholar 

  8. Wang J, Li Z, Yang J, Tang J, Yu J, Nie W, Lei G, Xiao Q (2012) Effect of Al-doping on the electrochemical properties of a three-dimensionally porous lithium manganese oxide for lithium-ion batteries. Electrochim Acta 75:115–122

    Article  CAS  Google Scholar 

  9. Deng B, Nakamura H, Yoshio M (2008) Capacity fading with oxygen loss for manganese spinels upon cycling at elevated temperatures. J Power Sources 180:864–868

    Article  CAS  Google Scholar 

  10. Manthiram A, Murugan AV, Sarkar A, Muraliganth T (2008) Nanostructured electrode materials for electrochemical energy storage and conversion. Energ Environ Sci 1:621–638

    Article  CAS  Google Scholar 

  11. Matsuda K, Taniguchi I (2004) Relationship between the electrochemical and particle properties of LiMn2 O4 prepared by ultrasonic spray pyrolysis. J Power Sources 132:156–160

    Article  CAS  Google Scholar 

  12. Santhanam R, Rambabu B (2010) Research progress in high voltage spinel LiNi0.5Mn1.5O4 material. J Power Sources 195:5442–5451

    Article  CAS  Google Scholar 

  13. Kakuda T, Uematsu K, Toda K, Sato M (2007) Electrochemical performance of Al-doped LiMn2O4 prepared by different methods in solid-state reaction. J Power Sources 167:499–503

    Article  CAS  Google Scholar 

  14. Choi HJ, Lee KM, Kim GH, Lee JG (2001) Mechanochemical synthesis and electrochemical properties of LiMn2O4. J Am Ceram Soc 84:242–244

    Article  CAS  Google Scholar 

  15. Hwang B, Santhanam R, Liu D (2001) Characterization of nanoparticles of LiMn2O4 synthesized by citric acid sol-gel method. J Power Sources 97:443–446

    Article  Google Scholar 

  16. Mao F, Wu D, Zhou Z, Wang S (2014) Structural and electrochemical properties of LiFe1- 3x/2Bi x PO4/C synthesized by sol-gel. Ionics 20:1665–1669

    Article  CAS  Google Scholar 

  17. Song MY, Kwon IH, Park HR, Mumm DR (2011) Electrochemical properties of LiCoyMn2- yO4 synthesized using a combustion method in a voltage range of 3.5-5.0 V. Ceram Int 37:2215–2220

    Article  CAS  Google Scholar 

  18. Jiang C, Dou S, Liu H, Ichihara M, Zhou H (2007) Synthesis of spinel LiMn2O4 nanoparticles through one-step hydrothermal reaction. J Power Sources 172:410–415

    Article  CAS  Google Scholar 

  19. Recham N, Dupont L, Courty M, Djellab K, Larcher D, Armand M, Tarascon JM (2009) Ionothermal synthesis of tailor-made LiFePO4 powders for Li-ion battery applications. Chem Mater 21:1096–1107

    Article  CAS  Google Scholar 

  20. Liu J, Liu X, Kong X, Zhang H (2012) Controlled synthesis, formation mechanism and upconversion luminescence of NaYF4:Yb, Er nano-/submicrocrystals via ionothermal approach. J Solid State Chem 190:98–103

    Article  CAS  Google Scholar 

  21. Li XL, Chen JJ, Luo M, Chen XY, Li PP (2010) Quantum chemical calculation of hydroxyalkyl ammonium functionalized ionic liquids for absorbing SO2. Acta Phys -Chim Sin 26:1364–1372

    CAS  Google Scholar 

  22. Li XL, He WX, Xiao ZH, Peng FF, Chen JJ (2013) Ionothermal synthesis and rate performance studies of nanostructured Li3V2(PO4)3/C composites as cathode materials for lithium-ion batteries. J Solid State Electrochem 17:1991–2000

    Article  CAS  Google Scholar 

  23. Li XL, Guo W, Liu YF, He WX, Xiao ZH (2014) Spinel LiNi0.5Mn1.5O4 as superior electrode materials for lithium-ion batteries: ionic liquid assisted synthesis and the effect of CuO coating. Electrochim Acta 116:278–283

    Article  CAS  Google Scholar 

  24. Lee HW, Muralidharan P, Ruffo R, Mari CM, Cui Y, Kim DK (2010) Ultrathin spinel LiMn2O4 nanowires as high power cathode materials for Li-ion batteries. Nano Lett 10:3852–3856

    Article  CAS  Google Scholar 

  25. Kim DK, Muralidharan P, Lee HW, Ruffo R, Yang Y, Chan CK, Peng H, Huggins RA, Cui Y (2008) Spinel LiMn2O4 nanorods as lithium ion battery cathodes. Nano Lett 8:3948–3952

    Article  CAS  Google Scholar 

  26. Xiao L, Zhao Y, Yang Y, Cao Y, Ai X, Yang H (2008) Enhanced electrochemical stability of Al-doped LiMn2O4 synthesized by a polymer-pyrolysis method. Electrochim Acta 54:545–550

    Article  CAS  Google Scholar 

  27. Yang Y, Xie C, Ruffo R, Peng H, Kim DK, Cui Y (2009) Single nanorod devices for battery diagnostics: a case study on LiMn2O4. Nano Lett 9:4109–4114

    Article  CAS  Google Scholar 

  28. Yao J, Lv L, Shen C, Zhang P, Aguey-Zinsou KF, Wang L (2013) Nano-sized spinel LiMn2O4 powder fabricated via modified dynamic hydrothermal synthesis. Ceram Int 39:3359–3364

    Article  CAS  Google Scholar 

  29. Xia Y, Zhang W, Huang H, Gan Y, Li C, Tao X (2011) Synthesis and electrochemical properties of Nb-doped Li3V2(PO4)3/C cathode materials for lithium-ion batteries. Mater Sci Eng B 176:633–639

    Article  CAS  Google Scholar 

  30. Qiao Y, Tu J, Wang X, Zhang J, Yu Y, Gu C (2011) Self-assembled synthesis of hierarchical waferlike porous Li-V-O composites as cathode materials for lithium ion batteries. J Phys Chem C 115:25508–25518

    Article  CAS  Google Scholar 

  31. Xiang J, Tu J, Zhang L, Wang X, Zhou Y, Qiao Y, Lu Y (2010) Improved electrochemical performances of 9LiFePO(4) center dot Li3V2(PO4)/C composite prepared by a simple solid-state method. J Power Sources 195:8331–8335

    Article  CAS  Google Scholar 

  32. Huang J, Yang L, Liu K, Tang Y (2010) Synthesis and characterization of Li3V(2- 2x/3)Mgx(PO4)3/C cathode material for lithium-ion batteries. J Power Sources 195:5013–5018

    Article  CAS  Google Scholar 

  33. Sehrawat R, Sil A (2014) Polymer gel combustion synthesis of LiFePO4/C composite as cathode material for Li-ion battery. Ionics. doi:10.1007/s11581-014-1229-6

    Google Scholar 

  34. Yao J, Shen C, Zhang P, Ma CA, Gregory DH, Wang L (2013) Spinel-Li3.5+xTi5O12 coated LiMn2O4 with high surface Mn valence for an enhanced cycling performance at high temperature. Electrochem Commun 31:92–95

    Article  CAS  Google Scholar 

  35. Jiang RY, Cui CY, Ma HY (2013) Poly(vinyl pyrrolidone)-assisted hydrothermal synthesis of LiMn2O4 nanoparticles with excellent rate performance. Mater Lett 91:12–15

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Science and Technology Project of Anhui Province (1301022077) and the Science and Technology Project of Land and Resources of Anhui Province (2012-k-18).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueliang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Zhou, Q., Wang, H. et al. Ionothermal synthesis and enhanced electrochemical performance of nanostructure Cr-doped LiMn2O4 for lithium-ion batteries. Ionics 21, 1517–1523 (2015). https://doi.org/10.1007/s11581-014-1352-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-014-1352-4

Keywords

Navigation