Skip to main content
Log in

Improved copper corrosion resistance of epoxy-functionalized hybrid sol–gel monolayers by thiosemicarbazide

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

To improve the copper corrosion resistance of epoxy-functionalized hybrid sol–gel monolayers (Hy) consisting of 3-glycidoxypropyltrimethoxysilane (GPTMS-functional monomer) and tetraethoxysilane (TEOS-reticulating agent), the copper surface was modified by a well-defined inhibitor viz., thiosemicarbazide (TSC). At first, the copper surface was activated by TSC monolayers through Cu–S bonds which end up with free tail amino groups. Secondly, Hy monolayers were immobilized on the TSC-modified copper surface via epoxy-amine reaction. The interaction of TSC with copper and Hy was investigated by Fourier transform infrared spectroscopy, which revealed the cleavage of epoxy ring due to the cross-linking reaction with free amino groups of TSC monolayers. The surface morphology of these monolayers was investigated by scanning electron microscopy and atomic force microscopy. The effectiveness of TSC and Hy monolayers on corrosion protection of copper was scrutinized by electrochemical methods viz., potentiodynamic polarization studies and electrochemical impedance spectroscopy techniques. These studies revealed the enhancement of copper corrosion resistance of epoxy-functionalized Hy monolayers by the TSC activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Snihirova D, Lamaka SV, Taryba M, Salak AN, Kallip S, Zheludkevich ML, Ferreira MGS, Montemor MF (2010) Hydroxyapatite microparticles as feedback-active reservoirs of corrosion inhibitors. ACS Appl Mater Interf 2:3011–3022

    Article  CAS  Google Scholar 

  2. Biswas BN, Mollah MYA, Susan MABH (2012) Potentiodynamic studies on corrosion of copper by chloride ions and its inhibition by inorganic and organic ions in aqueous buffer solution. Ionics 18:189–195

    Article  CAS  Google Scholar 

  3. Liang C, Wang P, Wu B, Huang N (2010) Inhibition of copper corrosion by self-assembled monolayers of triazole derivative in chloride-containing solution. J Solid State Electrochem 14:1391–1399

    Article  CAS  Google Scholar 

  4. Younis AA, El-Sabbah MMB, Holze R (2012) The effect of chloride concentration and pH on pitting corrosion of AA7075 aluminum alloy coated with phenyltrimethoxysilane. J Solid State Electrochem 16:1033–1040

    Article  CAS  Google Scholar 

  5. Ma HY, Yang C, Chen SH, Jiao YL, Huang SX, Li DG, Luo JL (2003) Electrochemical investigation of dynamic interfacial processes at 1-octadecanethiol-modified copper electrodes in halide-containing solutions. Electrochim Acta 48:4277–4289

    Article  CAS  Google Scholar 

  6. Ulman A (1996) Formation and structure of self-assembled monolayers. Chem Rev 96:1533–1554

    Article  CAS  Google Scholar 

  7. Schreiber F (2000) Structure and growth of self-assembling monolayers. Prog Surf Sci 65:151–257

    Article  CAS  Google Scholar 

  8. Jennings GK, Munro JC, Yong TH, Laibinis PE (1998) Effect of chain length on the protection of copper by n-alkanethiols. Langmuir 14:6130–6139

    Article  CAS  Google Scholar 

  9. Laibinis PE, Whitesides GM (1992) Self-assembled monolayers of n-alkanethiolates on copper are barrier films that protect the metal against oxidation by air. J Am Chem Soc 114:9022–9028

    Article  CAS  Google Scholar 

  10. Silva DPB, Neves RS, Motheo AJ (2010) Electrochemical behaviour of the AA2024 aluminium alloy modified with self-assembled monolayers/polyaniline double films. Mol Cryst Liq Cryst 521:179–186

    Article  CAS  Google Scholar 

  11. Maege I, Jaehne E, Henke A, Adler HJP, Bram C, Jung C, Stratmann M (1997) Self-assembling adhesion promoters for corrosion resistant metal polymer interfaces. Prog Org Coat 34:1–12

    Article  Google Scholar 

  12. Cecchetto L, Denoyelle A, Delabouglise D, Petit JP (2008) A silane pre-treatment for improving corrosion resistance performances of emeraldine base-coated aluminium samples in neutral environment. Appl Surf Sci 254:1736–1743

    Article  CAS  Google Scholar 

  13. Li ZF, Ruckenstein E (2002) Strong adhesion and smooth conductive surface via graft polymerization of aniline on a modified glass fiber surface. J Colloid Interf Sci 251:343–349

    Article  CAS  Google Scholar 

  14. Jennings GK, Laibinis PE (1996) Self-assembled monolayers of alkanethiols on copper provide corrosion resistance in aqueous environments. Colloids Surf A 116:105–114

    Article  CAS  Google Scholar 

  15. Feng YQ, Teo WK, Siow KS, Gao ZQ, Tan KL, Hsieh AK (1997) Corrosion protection of copper by a self‐assembled monolayer of alkanethiol. J Electrochem Soc 144:55–64

    Article  CAS  Google Scholar 

  16. Taneichi D, Haneda R, Aramaki K (2001) A novel modification of an alkanethiol self-assembled monolayer with alkylisocyanates to prepare protective films against copper corrosion. Corros Sci 43:1589–1600

    Article  CAS  Google Scholar 

  17. Hukovic MM, Babic R, Petrovic Z, Posavecm D (2007) Copper protection by a self-assembled monolayer of alkanethiol: Comparison with benzotriazole. J Electrochem Soc 154:C138–C143

    Article  Google Scholar 

  18. Caprioli F, Beccari M, Martinelli A, Castro VD, Decker F (2010) Copper protection by self-assembled monolayers of aromatic thiols in alkaline solutions. Phys Chem Chem Phys 11:9230–9238

    Article  Google Scholar 

  19. Quan ZL, Chen SH, Li SL (2001) Protection of copper corrosion by modification of self-assembled films of Schiff bases with alkanethiol. Corros Sci 43:1071–1080

    Article  CAS  Google Scholar 

  20. Zhang DQ, He XM, Cai QR, Gao LX, Kim GS (2009) Arginine self-assembled monolayers against copper corrosion and synergistic effect of iodide ion. J Appl Electrochem 39:1193–1198

    Article  CAS  Google Scholar 

  21. Wang HM, Akid R, Gobara M (2010) Scratch-resistant anticorrosion sol-gel coating for protection of AZ31 magnesium alloy via a low temperature sol-gel route. Corros Sci 52:2565–2570

    Article  CAS  Google Scholar 

  22. Mrad M, Montemor MF, Dhouibi L, Triki E (2012) Deposition of hybrid 3-GPTMS’s film on AA2024-T3: dependence of film morphology and protectiveness performance on coating conditions. Prog Org Coat 73:264–271

    Article  CAS  Google Scholar 

  23. Metroke TL, Kachurina O, Knobbe ET (2002) Spectroscopic and corrosion resistance characterization of GLYMO–TEOS Ormosil coatings for aluminum alloy corrosion inhibition. Prog Org Coat 44:295–305

    Article  CAS  Google Scholar 

  24. Li GL, Wang XM, Li AJ, Wang WQ, Zheng L (2007) Fabrication and adhesive properties of thin organosilane films coated on low carbon steel substrates. Surf Coat Technol 201:9571–9578

    Article  CAS  Google Scholar 

  25. Parkhill RL, Knobbe ET, Donley MS (2001) Application and evaluation of environmentally compliant spray-coated ormosil films as corrosion resistant treatments for aluminum 2024-T3. Prog Org Coat 41:261–265

    Article  CAS  Google Scholar 

  26. Zucchi F, Grassi V, Frignani A, Trabanelli G (2004) Inhibition of copper corrosion by silane coatings. Corros Sci 46:2853–2865

    Article  CAS  Google Scholar 

  27. Singh MM, Rastogi RB, Upadhyay BN, Yadav M (2003) Thiosemicarbazide, phenyl isothiocyanate and their condensation product as corrosion inhibitors of copper in aqueous chloride solutions. Mater Chem Phys 80:283–293

    Article  CAS  Google Scholar 

  28. Abdel-wahaab SM, Gomma GK (1986) Adsorption of thiosemicarbazide on copper cathodes. J Chem Technol Biotechnol 36:185–190

    Article  CAS  Google Scholar 

  29. Peng S, Zhao W, Li H, Zeng Z, Xue Q, Wu X (2012) Synergistic effect of thiourea in epoxy functionalized silica sol–gel coating for copper protection. Surf Coat Technol 213:175–182

    Article  CAS  Google Scholar 

  30. Innochenzi P, Kidchob T (2005) Hybrid organic-inorganic sol-gel materials based on epoxy-amine systems. J Sol-Gel Sci Technol 35:225–235

    Article  Google Scholar 

  31. Clayden J, Greeves N, Warren S, Wothers P (2001) Organic chemistry. Oxford University Press, New York

    Google Scholar 

  32. Silverstein RM, Webster FX (1998) Spectrometric identification of organic compounds. Wiley, Canada

    Google Scholar 

  33. Santhakumari R, Ramamurthi K, Ramesh Babu R, Evans HS, Bhagavannarayana G, Hema R (2011) Growth and characterization of thiosemicarbazide hydrochloride: a semiorganic NLO material. Spectrochim Acta 82:102–107

    Article  CAS  Google Scholar 

  34. Lee YM, Chien YHC, Leung MK, Hu CC, Wan CC (2013) Surface protection of copper by self-assembly of novel poly (5-methylenebenzotriazol-N-yl). J Mater Chem A 1:3629–3638

    Article  CAS  Google Scholar 

  35. Chen W, Hong S, Li HB, Luo HQ, Li M, Li NB (2012) Protection of copper corrosion in 0.5 M NaCl solution by modification of 5-mercapto-3-phenyl-1,3,4-thiadiazole-2-thione potassium self-assembled monolayers. Corros Sci 61:53–62

    Article  CAS  Google Scholar 

  36. Elia A, Wael KD, Dowsett M, Adriaens A (2012) Electrochemical deposition of a copper carboxylate layer on copper as potential corrosion inhibitor. J Solid State Electrochem 16:143–148

    Article  CAS  Google Scholar 

  37. Deslouis C, Tribollet B, Mengoli G, Musiani MM (1988) Electrochemical behaviour of copper in neutral aerated chloride solution—I. Steady-state investigation. J Appl Electrochem 18:374–383

    Article  CAS  Google Scholar 

  38. Yan CW, Lin HC, Cao CN (2000) Investigation of inhibition of 2-mercaptobenzoxazole for copper corrosion. Electrochim Acta 45:2815–2821

    Article  CAS  Google Scholar 

  39. Kear G, Barker BD, Walsh FC (2004) Electrochemical corrosion of unalloyed copper in chloride media—a critical review. Corros Sci 46:109–135

    Article  CAS  Google Scholar 

  40. Kılınççeker G, Çelik S (2013) Electrochemical adsorption properties and inhibition of copper corrosion in chloride solutions by ascorbic acid: experimental and theoretical investigation. Ionics 19:1655–1662

    Article  Google Scholar 

  41. Karthik N, Sethuraman MG (2013) A robust method of enhancement of protection ability of electrodeposited silane film over copper surface using H2O2. Mater Corros. doi:10.1002/maco.201307396

    Google Scholar 

  42. Raistrick ID, Franceschetti DR, Macdonald JR (2005) Impedance spectroscopy theory, experiment, and application. Wiley, New York

    Google Scholar 

  43. Amin MA, Khaled KF, Mohsen Q, Arida HA (2010) A study of the inhibition of iron corrosion in HCl solutions by some amino acids. Corros Sci 52:1684–1695

    Article  CAS  Google Scholar 

  44. Li X, Deng S, Fu H, Mu G (2010) Synergistic inhibition effect of rare earth cerium(IV) ion and sodium oleate on the corrosion of cold rolled steel in phosphoric acid solution. Corros Sci 52:1167–1178

    Article  CAS  Google Scholar 

  45. Trachli B, Keddam M, Takenouti H, Srhiri A (2002) Protective effect of electropolymerized 3-amino 1,2,4-triazole towards corrosion of copper in 0.5 M NaCl. Corros Sci 44:997–1008

    Article  CAS  Google Scholar 

  46. Li Y, Fedkiw PS (2007) Effect of gel electrolytes containing silica nanoparticles on aluminum corrosion. Electrochim Acta 52:2471–2477

    Article  CAS  Google Scholar 

  47. Macdonald DD (1990) Review of mechanistic analysis by electrochemical impedance spectroscopy. Electrochim Acta 35:1509–1525

    Article  CAS  Google Scholar 

  48. Quan XL, Chen SH, Li L, Cui XG (2002) Adsorption behavior of Schiff base and corrosion protection of resulting films to copper substrate. Corros Sci 44:703–715

    Article  CAS  Google Scholar 

  49. Sakai RT, da Cruz FMDiL, de Melo HG, Benedetti AV, Santilli CV, Suegama PH (2012) Electrochemical study of TEOS, TEOS/MPTS, MPTS/MMA and TEOS/MPTS/MMA films on tin coated steel in 3.5 % NaCl solution. Prog Org Coat 74:288–301

    Article  CAS  Google Scholar 

  50. Fan H, Li S, Zhao Z, Wang H, Shi Z, Zhang L (2011) Inhibition of brass corrosion in sodium chloride solutions by self-assembled silane films. Corros Sci 53:4273–4281

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Board of Research in Nuclear Sciences (BRNS), Department of Atomic Energy (DAE), Mumbai, Government of India, for the financial support for this work through a major research project on “Sol–Gel” (No. 2011/37C/55/BRNS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathur Gopalakrishnan Sethuraman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karthik, N., Sethuraman, M.G. Improved copper corrosion resistance of epoxy-functionalized hybrid sol–gel monolayers by thiosemicarbazide. Ionics 21, 1477–1488 (2015). https://doi.org/10.1007/s11581-014-1274-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-014-1274-1

Keywords

Navigation