Skip to main content

Advertisement

Log in

A stochastic control approach to public debt management

  • Published:
Mathematics and Financial Economics Aims and scope Submit manuscript

Abstract

We discuss a class of debt management problems in a stochastic environment model. We propose a model for the debt-to-GDP (Gross Domestic Product) ratio where the government interventions via fiscal policies affect the public debt and the GDP growth rate at the same time. We allow for stochastic interest rate and possible correlation with the GDP growth rate through the dependence of both the processes (interest rate and GDP growth rate) on a stochastic factor which may represent any relevant macroeconomic variable, such as the state of economy. We tackle the problem of a government whose goal is to determine the fiscal policy in order to minimize a general functional cost. We prove that the value function is a viscosity solution to the Hamilton-Jacobi-Bellman equation and provide a Verification Theorem based on classical solutions. We investigate the form of the candidate optimal fiscal policy in many cases of interest, providing interesting policy insights. Finally, we discuss two applications to the debt reduction problem and debt smoothing, providing explicit expressions of the value function and the optimal policy in some special cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and material

Not applicable.

Code Availability

Not applicable.

Notes

  1. This is a simple application of Itô’s formula.

  2. Notice that \(\tau _n\rightarrow +\infty \) because the integrand functions in Eq. (4.7) are continuous by our assumptions.

References

  1. Alesina, A., Barbiero, O., Favero, C., Giavazzi, F., Paradisi, M.: The effects of fiscal consolidations: Theory and evidence. (23385), (May 2017)

  2. Alesina, A., Favero, C., Giavazzi, F.: The output effect of fiscal consolidation plans. Journal of International Economics, 96, S19–S42, (2015). 37th Annual NBER International Seminar on Macroeconomics

  3. Annicchiarico, B., Di Dio, F., Patrì, S.: (2022). Optimal correction ofthe public debt and measures of fiscal soundness. Metroeconomica, 1–25. https://doi.org/10.1111/meca.12405

  4. Barro, R.J.: On the determination of the public debt. J. Polit. Econ., 87(5, Part 1), 940–971 (1979)

  5. Blanchard, O.J.: Debt, deficits, and finite horizons. J. Polit. Econ. 93(2), 223–247 (1985)

    Article  Google Scholar 

  6. Cadenillas, A., Huamán-Aguilar, R.: Explicit formula for the optimal government debt ceiling. Ann. Oper. Res. 247(2), 415–449 (2016)

    Article  MathSciNet  Google Scholar 

  7. Cadenillas, A., Huamán-Aguilar, R.: On the failure to reach the optimal government debt ceiling. Risks 6(4), 138 (2018)

    Article  Google Scholar 

  8. Callegaro, G., Ceci, C., Ferrari, G.: Optimal reduction of public debt under partial observation of the economic growth. Finance Stochast. 24(4), 1083–1132 (2020)

    Article  MathSciNet  Google Scholar 

  9. Casalin, F., Dia, E., Hallett, A.H.: Public debt dynamics with tax revenue constraints. Economic Modelling, (2019)

  10. Delong, J.B., Summers, L.H.: Fiscal policy in a depressed economy. Brook. Pap. Econ. Act. 1, 233–297 (2012)

    Article  Google Scholar 

  11. Domar, E.D.: The “burden of the debt’’ and the national income. Am. Econ. Rev. 34(4), 798–827 (1944)

    Google Scholar 

  12. Fatás, A., Summers, L.H.: The permanent effects of fiscal consolidations. J. Int. Econ. 112, 238–250 (2018)

    Article  Google Scholar 

  13. Ferrari, G.: On the optimal management of public debt: a singular stochastic control problem. SIAM J. Control. Optim. 56(3), 2036–2073 (2018)

    Article  MathSciNet  Google Scholar 

  14. Ferrari, G., Rodosthenous, N.: Optimal control of debt-to-gdp ratio in an n-state regime switching economy. SIAM J. Control. Optim. 58(2), 755–786 (2020)

    Article  MathSciNet  Google Scholar 

  15. Fincke, B., Greiner, A.: Do large industrialized economies pursue sustainable debt policies? a comparative study for japan, germany and the united states. Jpn. World Econ. 23(3), 202–213 (2011)

    Article  Google Scholar 

  16. Neck, R., Sturm, J.E.: Sustainability of Public Debt. The MIT Press (2008)

  17. Ostry, J.D., Ghosh, A.R., Espinoza, R.: When should public debt be reduced? IMF Staff Discussion Note SDN/15/10, (2015)

  18. Pham, H.: Continuous-time Stochastic Control and Optimization with Financial Applications. Springer-Verlag, Heidelberg (2009)

  19. Wyplosz, C.: Fiscal policy: Institutions versus rules. Natl. Inst. Econ. Rev. 191(1), 64–78 (2005)

Download references

Acknowledgements

The authors are grateful to two anonymous referees, whose suggestions were helpful and lead to an improved version of the original manuscript.

Funding

The authors work has been partially supported by the Project INdAM-GNAMPA, number: U-UFMBAZ-2020-000791.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Brachetta.

Ethics declarations

Conflicts of interest/Competing interests

The authors declare no conflict of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Proofs of secondary results

Proofs of secondary results

Proof of Theorem 4.1

We adapt the proof of [18, Chapter 4.3] to our framework. Proposition 3.5 ensures the continuity of v. Let \(({\bar{x}},{\bar{z}})\in (0,+\infty )\times {\mathbb {R}}\) and take a test function \(\varphi \in {\mathcal {C}}^{2,2}((0,+\infty )\times {\mathbb {R}})\) such that

$$\begin{aligned} 0 = (v-\varphi )({\bar{x}},{\bar{z}}) = \max _{(x,z)\in (0,+\infty )\times {\mathbb {R}}}(v-\varphi )(x,z) \;. \end{aligned}$$

Let us observe that \(v\le \varphi \) by construction. Since v is continuous, there exists a sequence \(\{(x_n,z_n)\}_{n\ge 1}\) such that

$$\begin{aligned} (x_n,z_n) \rightarrow ({\bar{x}},{\bar{z}}) \qquad \text {and } \qquad v(x_n,z_n) \rightarrow v({\bar{x}},{\bar{z}}) \qquad \text {as } n\rightarrow +\infty \;. \end{aligned}$$

Correspondingly, we must have that

$$\begin{aligned} \gamma _n \doteq v(x_n,z_n) - \varphi (x_n,z_n) \rightarrow 0 \qquad \text {as } n\rightarrow +\infty \;. \end{aligned}$$

Now let us consider a control \({\bar{u}}_t={\bar{u}}\) \(\forall t>0\), for some arbitrary constant \({\bar{u}}\in [-U_1,U_2]\). Moreover, let introduce a sequence of stopping times \(\{\tau _n\}_{n\ge 0}\) as follows:

$$\begin{aligned} \tau _n = \inf \left\{ s\ge 0 \mid \max \left\{ \left| X^{{\bar{u}},x_n}_s-x_n\right| ,\left| Z^{z_n}_s-z_n\right| \right\} > \epsilon \right\} \wedge h_n \qquad n\ge 1\;, \end{aligned}$$

for some fixed \(\epsilon >0\) and \(\{h_n\}_{n\ge 1}\) such that

$$\begin{aligned} h_n\rightarrow 0 \;, \qquad \frac{\gamma _n}{h_n} \rightarrow 0 \qquad \text {as } n\rightarrow +\infty \;. \end{aligned}$$

Here \(\{Z^{z_n}_t\}_{t\ge 0}\) denotes the solution of the SDE (2.1) with initial condition \(Z^{z_n}_0=z_n\). By the dynamic programming principle (see e.g. [18, Theorem 3.3.1]) for any \(n\ge 1\) we have that

$$\begin{aligned} v(x_n,z_n) \le {\mathbb {E}}\biggl [ \int _0^{\tau _n} e^{-\lambda t} f(X^{{\bar{u}},x_n}_t,Z^{z_n}_t,{\bar{u}})\,dt + e^{-\lambda \tau _n}v(X^{{\bar{u}},x_n}_{\tau _n},Z^{z_n}_{\tau _n}) \biggr ] \;, \end{aligned}$$

hence

$$\begin{aligned} \varphi (x_n,z_n) + \gamma _n \le {\mathbb {E}}\biggl [ \int _0^{\tau _n} e^{-\lambda t} f(X^{{\bar{u}},x_n}_t,Z^{z_n}_t,{\bar{u}})\,dt + e^{-\lambda \tau _n}\varphi (X^{{\bar{u}},x_n}_{\tau _n},Z^{z_n}_{\tau _n}) \biggr ] \;. \end{aligned}$$

Applying Itô’s formula we get that

$$\begin{aligned} e^{-\lambda \tau _n}\varphi (X^{{\bar{u}},x_n}_{\tau _n},Z^{z_n}_{\tau _n})= & {} \varphi (x_n,z_n) + \int _0^{\tau _n} e^{-\lambda t}[{\mathcal {L}}^{{\bar{u}}} \varphi (X^{{\bar{u}},x_n}_t,Z^{z_n}_t) \nonumber \\&- \lambda \varphi (X^{{\bar{u}},x_n}_t,Z^{z_n}_t)] \,dt + M_{\tau _n} \;, \end{aligned}$$
(A.1)

where

$$\begin{aligned} M_t= & {} \int _0^t e^{-\lambda s}\frac{\partial {\varphi }}{\partial {x}}(X^{{\bar{u}},x_n}_s,Z^{z_n}_s)\sigma X^{{\bar{u}},x_n}_s \,dW_s \\&+ \int _0^t e^{-\lambda s}\frac{\partial {\varphi }}{\partial {z}}(X^{{\bar{u}},x_n}_s,Z^{z_n}_s)\sigma _Z(Z^{z_n}_s) \,dW^Z_s \;. \end{aligned}$$

Clearly \(\{M_t\}_{t\ge 0}\) is a local martingale (having \(\{\tau _n\}_{n\ge 0}\) as localizing sequence of stopping times) because the integrand functions are continuous and hence bounded on the compact sets. Taking expectations in Eq. (A.1) and using the previous inequality yields

$$\begin{aligned} \begin{aligned}&\gamma _n+\varphi (x_n,z_n) \\&\quad = \gamma _n - {\mathbb {E}}\biggl [ \int _0^{\tau _n} e^{-\lambda t}[{\mathcal {L}}^{{\bar{u}}} \varphi (X^{{\bar{u}},x_n}_t,Z^{z_n}_t) - \lambda \varphi (X^{{\bar{u}},x_n}_t,Z^{z_n}_t)]\,dt \biggr ]\\&\quad \quad + {\mathbb {E}}\biggl [ e^{-\lambda \tau _n}\varphi (X^{{\bar{u}},x_n}_{\tau _n},Z^{z_n}_{\tau _n}) \biggr ] \\&\quad \le {\mathbb {E}}\biggl [ \int _0^{\tau _n} e^{-\lambda t}f(X^{{\bar{u}},x_n}_t,Z^{z_n}_t,{\bar{u}})\,dt \biggr ] + {\mathbb {E}}\biggl [ e^{-\lambda \tau _n}\varphi (X^{{\bar{u}},x_n}_{\tau _n},Z^{z_n}_{\tau _n}) \biggr ] \;, \end{aligned} \end{aligned}$$

that is, dividing by \(h_n\) (using that \(\tau _n\le h_n\)),

$$\begin{aligned} \frac{\gamma _n}{h_n} \le {\mathbb {E}}\biggl [ \frac{1}{h_n}\int _0^{\tau _n}e^{-\lambda t}[{\mathcal {L}}^{{\bar{u}}} \varphi (X^{{\bar{u}},x_n}_t,Z^{z_n}_t) + f(X^{{\bar{u}},x_n}_t,Z^{z_n}_t,{\bar{u}}) - \lambda \varphi (X^{{\bar{u}},x_n}_t,Z^{z_n}_t)]\,dt \biggr ] \;. \end{aligned}$$

Letting \(n\rightarrow +\infty \) we have that \(X^{{\bar{u}},x_n}_t\rightarrow X^{{\bar{u}},{\bar{x}}}_t\) and \(Z^{z_n}_t\rightarrow Z^{{\bar{z}}}_t\), \(\forall t \ge 0\) \( {\mathbb {P}}-a.s.\) and the right-hand side converges to \({\mathcal {L}}^{{\bar{u}}} \varphi ({\bar{x}},{\bar{z}}) + f({\bar{x}},{\bar{z}},{\bar{u}})-\lambda \varphi ({\bar{x}},{\bar{z}})\) by the mean value theorem for integrals. Hence

$$\begin{aligned} {\mathcal {L}}^{{\bar{u}}} \varphi ({\bar{x}},{\bar{z}}) + f({\bar{x}},{\bar{z}},{\bar{u}}) - \lambda \varphi ({\bar{x}},{\bar{z}}) \ge 0 \;. \end{aligned}$$

Since \({\bar{u}}\) is arbitrary, taking the infimum we obtain that v is a viscosity subsolution of Eq. (4.2) (see Eq. (4.3)).

Now we prove that v is a viscosity supersolution. To this end, we take a test function \(\varphi \in {\mathcal {C}}^{2,2}((0,+\infty )\times {\mathbb {R}})\) such that

$$\begin{aligned} 0 = (v-\varphi )({\bar{x}},{\bar{z}}) = \min _{(x,z)\in (0,+\infty )\times {\mathbb {R}}}(v-\varphi )(x,z) \;. \end{aligned}$$

By definition of the value function, we can find a strategy \(\{{\hat{u}}_t\}_{t\ge 0}\in {\mathcal {U}}\) such that

$$\begin{aligned} v(x_n,z_n) + h_n^2 \ge {\mathbb {E}}\biggl [ \int _0^{\tau _n} e^{-\lambda t} f(X^{{\hat{u}},x_n}_t,Z^{z_n}_t,{\hat{u}}_t)\,dt + e^{-\lambda \tau _n}v(X^{{\hat{u}},x_n}_{\tau _n},Z^{z_n}_{\tau _n}) \biggr ] \;, \end{aligned}$$

and hence

$$\begin{aligned} \varphi (x_n,z_n) + \gamma _n + h_n^2 \ge {\mathbb {E}}\biggl [ \int _0^{\tau _n} e^{-\lambda t} f(X^{{\hat{u}},x_n}_t,Z^{z_n}_t,{\hat{u}}_t)\,dt + e^{-\lambda \tau _n}v(X^{{\hat{u}},x_n}_{\tau _n},Z^{z_n}_{\tau _n}) \biggr ] \;. \end{aligned}$$

Using Eq. (A.1) and \(v\ge \varphi \) we obtain that

$$\begin{aligned}&\gamma _n + h_n^2 + {\mathbb {E}}\biggl [ e^{-\lambda \tau _n}\varphi (X^{{\hat{u}},x_n}_{\tau _n},Z^{z_n}_{\tau _n}) \biggr ] - {\mathbb {E}}\biggl [ \int _0^{\tau _n} e^{-\lambda t}[{\mathcal {L}}^{{\hat{u}}} \varphi (X^{{\hat{u}},x_n}_t,Z^{z_n}_t) - \lambda \varphi (X^{{\hat{u}},x_n}_t,Z^{z_n}_t)]\,dt \biggr ] \\&\quad \ge {\mathbb {E}}\biggl [ \int _0^{\tau _n} e^{-\lambda t}f(X^{{\hat{u}},x_n}_t,Z^{z_n}_t,{\hat{u}}_t)\,dt \biggr ] + {\mathbb {E}}\biggl [ e^{-\lambda \tau _n}\varphi (X^{{\hat{u}},x_n}_{\tau _n},Z^{z_n}_{\tau _n}) \biggr ] \;, \end{aligned}$$

and dividing by \(h_n\) we get

$$\begin{aligned} \begin{aligned} \frac{\gamma _n}{h_n} + h_n&\ge {\mathbb {E}}\biggl [ \frac{1}{h_n}\int _0^{\tau _n}e^{-\lambda t}[{\mathcal {L}}^{{\hat{u}}} \varphi (X^{{\hat{u}},x_n}_t,Z^{z_n}_t) + f(X^{{\hat{u}},x_n}_t,Z^{z_n}_t,{\hat{u}}_t) - \lambda \varphi (X^{{\hat{u}},x_n}_t,Z^{z_n}_t)]\,dt \biggr ] \\&\ge {\mathbb {E}}\biggl [ \frac{1}{h_n}\int _0^{\tau _n}\inf _{u\in [-U_1,U_2]}\{{\mathcal {L}}^{u} \varphi (X^{u,x_n}_t,Z^{z_n}_t) + f(X^{u,x_n}_t,Z^{z_n}_t,u) - \lambda \varphi (X^{u,x_n}_t,Z^{z_n}_t) \}\,dt \biggr ] \;. \end{aligned} \end{aligned}$$

Observing that

$$\begin{aligned} \lim _{n\rightarrow +\infty }\frac{\tau _n}{h_n} = \min \left\{ \lim _{n\rightarrow +\infty }\frac{\inf \left\{ s\ge 0 \mid \max \left\{ \left| X^{{\bar{u}},x_n}_s-x_n\right| ,\left| Z^{z_n}_s-z_n\right| \right\} \ge \epsilon \right\} }{h_n}, 1 \right\} = 1 \;, \end{aligned}$$

using the mean value theorem for integrals again, we finally get the inequality

$$\begin{aligned} \inf _{u\in [-U_1,U_2]}\{ {\mathcal {L}}^{u} \varphi ({\bar{x}},{\bar{z}}) + f({\bar{x}},{\bar{z}},u) - \lambda \varphi ({\bar{x}},{\bar{z}}) \} \le 0 \;, \end{aligned}$$

and hence v is a viscosity supersolution of Eq. (4.2) (see Eq. (4.4)).

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brachetta, M., Ceci, C. A stochastic control approach to public debt management. Math Finan Econ 16, 749–778 (2022). https://doi.org/10.1007/s11579-022-00323-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11579-022-00323-7

Keywords

JEL Classification

Navigation