Skip to main content
Log in

Fractional risk process in insurance

  • Published:
Mathematics and Financial Economics Aims and scope Submit manuscript

Abstract

The Poisson process suitably models the time of successive events and thus has numerous applications in statistics, in economics, it is also fundamental in queueing theory. Economic applications include trading and nowadays particularly high frequency trading. Of outstanding importance are applications in insurance, where arrival times of successive claims are of vital importance. It turns out, however, that real data do not always support the genuine Poisson process. This has lead to variants and augmentations such as time dependent and varying intensities, for example. This paper investigates the fractional Poisson process. We introduce the process and elaborate its main characteristics. The exemplary application considered here is the Carmér–Lundberg theory and the Sparre Andersen model. The fractional regime leads to initial economic stress. On the other hand we demonstrate that the average capital required to recover a company after ruin does not change when switching to the fractional Poisson regime. We finally address particular risk measures, which allow simple evaluations in an environment governed by the fractional Poisson process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ahmadi-Javid, A., Pichler, A.: An analytical study of norms and Banach spaces induced by the entropic value-at-risk. Math. Financ. Econ. 11(4), 527–550 (2017)

    Article  MathSciNet  Google Scholar 

  2. Aletti, G., Leonenko, N.N., Merzbach, E.: Fractional Poisson processes and martingales. J. Stat. Phys. 170(4), 700–730 (2018)

    Article  MathSciNet  Google Scholar 

  3. Artzner, P., Delbaen, F., Eber, J.-M., Heath, D.: Coherent measures of risk. Math. Finance 9, 203–228 (1999)

    Article  MathSciNet  Google Scholar 

  4. Beghin, L., Orsingher, E.: Fractional Poisson processes and related planar random motions. Electron. J. Probab. 14(61), 1790–1827 (2009)

    Article  MathSciNet  Google Scholar 

  5. Beghin, L., Orsingher, E.: Poisson-type processes governed by fractional and higher-order recursive differential equations. Electron. J. Probab. 15(22), 684–709 (2010)

    Article  MathSciNet  Google Scholar 

  6. Bingham, N.H.: Limit theorems for occupation times of Markov processes. Z. Wahrscheinlichkeitstheorie Verw. Geb. 17, 1–22 (1971)

    Article  MathSciNet  Google Scholar 

  7. Borodin, A.N., Salminen, P.: Handbook of Brownian motion-facts and formulae. Birkhäuser (2012). https://doi.org/10.1007/978-3-0348-7652-0

    Article  MATH  Google Scholar 

  8. Cont, R., Tankov, P.: Financial Modeling with Jump Processes. CRC Press, Boca Raton (2004)

    MATH  Google Scholar 

  9. Daley, D.J.: The Hurst index for a long-range dependent renewal processes. Ann. Probab. 27(4), 2035–2041 (1999)

    Article  MathSciNet  Google Scholar 

  10. Grandell, J.: Aspects of Risk Theory. Springer, New York (1991)

    Book  Google Scholar 

  11. Haubold, H.J., Mathai, A.M., Saxena, R.K.: Mittag-Leffler functions and their applications. J. Appl. Math. Art. ID 298628, 51 (2011)

  12. Kataria, K.K., Vellaisamy, P.: On densities of the product, quotient and power of independent subordinators. J. Math. Anal. Appl. 462, 1627–1643 (2018)

    Article  MathSciNet  Google Scholar 

  13. Kerss, A., Leonenko, N.N., Sikorskii, A.: Fractional Skellam processes with applications to finance. Fract. Calc. Appl. Anal. 17, 532–551 (2014)

    Article  MathSciNet  Google Scholar 

  14. Khinchin, A.Y.: Mathematical Methods in the Theory of Queueing. Hafner Publishing Co., New York (1969)

    Google Scholar 

  15. Kumar, A., Vellaisamy, P.: Inverse tempered stable subordinators. Stat. Probab. Lett. 103, 134–141 (2015)

    Article  MathSciNet  Google Scholar 

  16. Kusuoka, S.: On law invariant coherent risk measures. In: Advances in Mathematical Economics, vol. 3 Ch. 4, Springer, pp. 83–95 (2001)

  17. Leonenko, N.N., Meerschaert, M.M., Schilling, R.L., Sikorskii, A.: Correlation structure of time-changed Lévy processes. Commun. Appl. Ind. Math. 6(1), e-483,22 (2014)

    MATH  Google Scholar 

  18. Leonenko, N.N., Scalas, E., Trinh, M.: Limit Theorems for the Fractional Non-homogeneous Poisson Process. J. Appl. Prob. (in Press) (2019)

  19. Leonenko, N.N., Scalas, E., Trinh, M.: The fractional non-homogeneous Poisson process. Stat. Probab. Lett. 120, 147–156 (2017)

    Article  MathSciNet  Google Scholar 

  20. Mainardi, F., Gorenflo, R., Scalas, E.: A fractional generalization of the Poisson processes. Vietnam J. Math. 32, 53–64 (2004)

    MathSciNet  MATH  Google Scholar 

  21. Mainardi, F., Gorenflo, R., Vivoli, A.: Renewal processes of Mittag-Leffler and Wright type. Fract. Calc. Appl. Anal. 8(1), 7–38 (2005)

    MathSciNet  MATH  Google Scholar 

  22. Meerschaert, M.M., Nane, E., Vellaisamy, P.: The fractional Poisson process and the inverse stable subordinator. Electron. J. Probab. 16(59), 1600–1620 (2011)

    Article  MathSciNet  Google Scholar 

  23. Meerschaert, M.M., Sikorskii, A.: Stochastic Models for Fractional Calculus. De Gruyter, Berlin (2012)

    MATH  Google Scholar 

  24. Mikosch, T.: Non-life Insurance Mathematics: An Introduction with the Poisson Process. Springer, Berlin (2009)

    Book  Google Scholar 

  25. Pflug, G.C., Römisch, W.: Modeling, Measuring and Managing Risk. World Scientific, Singapore (2007). https://doi.org/10.1142/9789812708724

    Book  MATH  Google Scholar 

  26. Raberto, M., Scalas, E., Mainardi, F.: Waiting times and returns in high-frequency financial data: an empirical study. Phys. A 314, 749–755 (2002)

    Article  Google Scholar 

  27. Samorodnitsky, G., Taqqu, M.S.: Stable Non-Gaussian Random Processes. Chapman & Hall, New York (1994)

    MATH  Google Scholar 

  28. Scalas, E., Gorenflo, R., Luckock, H., Mainardi, F., Mantelli, M., Raberto, M.: Anomalous waiting times in high-frequency financial data. Quant. Finance 4, 695–702 (2004)

    Article  MathSciNet  Google Scholar 

  29. Veillette, M., Taqqu, M.S.: Numerical computation of first passage times of increasing Lévy processes. Methodol. Comput. Appl. Probab. 12(4), 695–729 (2010)

    Article  MathSciNet  Google Scholar 

  30. Veillette, M., Taqqu, M.S.: Using differential equations to obtain joint moments of first-passage times of increasing Lévy processes. Stat. Probab. Lett. 80(7–8), 697–705 (2010)

    Article  Google Scholar 

  31. Young, V.R.: Premium principles. In: Encyclopedia of Actuarial Science (2006)

Download references

Acknowledgements

N. Leonenko was supported in particular by Australian Research Council’s Discovery Projects funding scheme (Project DP160101366) and by Project MTM2015-71839-P of MINECO, Spain (co-funded with FEDER funds).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alois Pichler.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Leonenko, N. & Pichler, A. Fractional risk process in insurance. Math Finan Econ 14, 43–65 (2020). https://doi.org/10.1007/s11579-019-00244-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11579-019-00244-y

Keywords

JEL Classification

Navigation