Skip to main content
Log in

Optimal mass transport and symmetric representations of their cost functions

  • Published:
Mathematics and Financial Economics Aims and scope Submit manuscript

Abstract

We consider Monge–Kantorovich problems corresponding to general cost functions \(c(x,y)\) but with symmetry constraints on a Polish space \(X\times X\). Such couplings naturally generate anti-symmetric Hamiltonians on \(X\times X\) that are \(c\)-convex with respect to one of the variables. In particular, if \(c\) is differentiable with respect to the first variable on an open subset \(X\) in \( \mathbb {R}^d\), we show that for every probability measure \(\mu \) on \(X\), there exists a symmetric probability measure \(\pi _0\) on \(X\times X\) with marginals \(\mu \), and an anti-symmetric Hamiltonian \(H\) such that \(\nabla _2H(y, x)=\nabla _1c(x,y)\) for \( \pi _0\)-almost all \((x,y) \in X \times X.\) If \(\pi _0\) is supported on a graph \((x, Sx)\), then \(S\) is necessarily a \(\mu \)-measure preserving involution (i.e., \(S^2=I\)) and \(\nabla _2H(x, Sx)=\nabla _1c(Sx,x)\) for \(\mu \)-almost all \(x \in X.\) For monotone cost functions such as those given by \(c(x,y)=\langle x, u(y)\rangle \) or \(c(x,y)=-|x-u(y)|^2\) where \(u\) is a monotone operator, \(S\) is necessarily the identity yielding a classical result by Krause, namely that \(u(x)=\nabla _2H(x, x)\) where \(H\) is anti-symmetric and concave-convex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beiglbock, M., Leonard, C., Schachermayer, W.: A general duality theorem for the Monge–Kantorovich transport problem. Studia Math. 209(2), 151–167 (2012)

    Article  MathSciNet  Google Scholar 

  2. Beiglbock, M., Goldstern, M., Maresch, G., Schachermayer, W.: Optimal and better transport plans. J. Funct. Anal. 255(6), 1907–1927 (2009)

  3. Beiglbock, M., Schachermayer, W.: Duality for Borel measurable cost functions. Trans. Am. Math. Soc. 363, 4203–4224 (2011)

    Article  MathSciNet  Google Scholar 

  4. Brenier, Y.: Polar factorization and monotone rearrangement of vector-valued functions. Commun. Pure Appl. Math. 44, 375–417 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  5. Carlier, G.: uality and existence for a class of mass transportation problems and economic applications. Adv. Math. Econ. 5, 1–21 (2003)

    Article  MathSciNet  Google Scholar 

  6. Carlier, G.: A general existence result for the principal-agent problem with adverse selection. J. Math. Econom. 35, 129–150 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chiappori, P.A., Galichon, A., Salanié, B.: The Roommate Problem is More Stable than You Think, Games and Economic Behavior, 2013 (To appear)

  8. Chiappori, P.A., McCann, R., Nesheim, L.P.: Hedonic price equilibria, stable matching, and optimal transport: equivalence, topology, and uniqueness. Economic Theory 42(2), 317–354 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Colombo, M., Marino,S. D.: Equality between Monge and Kantorovich multimarginal problems with Coulomb cost, preprint. Annali di Matematica Pura ed Applicata (2013). doi:10.1007/s10231-013-0376-0

  10. Ekeland, I.: An optimal matching problem. Control Optim. Calc. Var. 11(1), 57–71 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ekeland, I.: Existence, uniqueness and efficiency of equilibrium in hedonic markets with multidimensional types. Econ. Theory 42, 275–315 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  12. Figalli, A., Kim, Y.-H., McCann, R.J.: When is a multidimensional screening a convex program? J. Econ. Theory 146(2), 454–478 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  13. Galichon, A., Ghoussoub, N.: Variational representations for N-cyclically monotone vector fields. Pac. J. Math. 269(2), 323340 (2014)

  14. Ghoussoub, N., Moameni, A.: A self-dual polar factorization for vector fields. Commun. Pure. Applied. Math. 66(6), 905–933 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ghoussoub, N., Moameni, A.: Symmetric Monge–Kantorovich problems and polar decompositions of vector fields. Geom. Funct. Anal. 24(4), 1129–1166 (2014)

  16. Kantorovich, L.: On the translocation of masses. C.R. (Doklady) Acad. Sci. URSS (N.S.) 37, 199–201 (1942)

    MathSciNet  Google Scholar 

  17. Krauss, E.: A representation of arbitrary maximal monotone operators via subgradients of skew-symmetric saddle functions. Nonlinear Anal. 9(12), 1381–1399 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  18. Levin, V.L.: Abstract cyclical monotonicity and Monge solutions for the general Monge–Kantorovich problem. Set-valued Anal. 7, 7–32 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  19. McCann, R.J.: Polar factorization of maps on Riemannian manifolds. Geom. Funct. Anal. 11(3), 589–608 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  20. Martinez-Legaz, J.-E.: Generalized conjugation and related topics. In: Cambini, A., Castagnoli, E., Martein, L., Mazzoleni, P., Schaible, S. (eds.) Generalized Convexity and Fractional Programming with Economic Applications, pp. 168–197. Springer, Berlin (1990)

  21. Rachev, S.T., Roschendorf, L.: Mass Transportation Problems. Vol. I. Theory. Probability and its Applications (New York). Springer, New York (1998)

    Google Scholar 

  22. Rockafellar, T.: Convex Analysis. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  23. Villani, C.: Optimal Transport. Old and New. Grundlehren der Mathematischen Wissenschaften. Springer, Berlin (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nassif Ghoussoub.

Additional information

Dedicated to Ivar Ekeland on his 70th Birthday.

Nassif Ghoussoub and Abbas Moameni were partially supported by grants from the Natural Sciences and Engineering Research Council of Canada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghoussoub, N., Moameni, A. Optimal mass transport and symmetric representations of their cost functions. Math Finan Econ 8, 435–451 (2014). https://doi.org/10.1007/s11579-014-0126-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11579-014-0126-0

Keywords

JEL Classification

Navigation