Skip to main content
Log in

Spiking image processing unit based on neural analog of Boolean logic operations

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

McCulloch and Pitts hypothesized in 1943 that the brain is entirely composed of logic gates, akin to current computers' IP cores, which led to several neural analogs of Boolean logic. The current study proposes a spiking image processing unit (SIPU) based on spiking frequency gates and coordinate logic operations, as a dynamical model of synapses and spiking neurons. SIPU can imitate DSP functions like edge recognition, picture magnification, noise reduction, etc. but can be extended to cater for more advanced computing tasks. The proposed spiking Boolean logic platform can be used to develop advanced applications without relying on learning or specialized datasets. It could aid in gaining a deeper understanding of complex brain functions and spur new forms of neural analogs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Abeles M (1999) Corticonics: neural circuits of the cerebral cortex. Cambridge University Press, Cambridge

    Google Scholar 

  • Ahmad S, Tesauro G (1989) Scaling and generalization in neural network. In: Touretzky DS (ed) Advances in neural information processing systems is a conference from MIT press, pp 160–168

  • Amiri M, Nazari S, Faez K (2019) Digital realization of the proposed linear model of the H odgkin-H uxley neuron. Int J Circuit Theory Appl 47(3):483–497

    Article  Google Scholar 

  • Binder A, Freund R, Oswald M, Vock L (2007) Extended spiking neural P systems with excitatory and inhibitory astrocytes. In: Proceedings of the 8th WSEAS international conference on evolutionary computing, Vancouver, British Columbia, Canada, June 19–21 (2007)

  • Ceterchi R, Sburlan D (2004) Simulating Boolean circuits with P systems. In: Membrane computing lecture notes in computer science, pp 104–122

  • Chaves M, Albert R, Sontag ED (2005) Robustness and fragility of Boolean models for genetic regulatory networks. J Theor Biol 235(3):431–449

    Article  PubMed  Google Scholar 

  • Dayan P (2009) A neurocomputational jeremiad. Nat Neurosci 12(10):1207–1207

    Article  CAS  Google Scholar 

  • Dietmeyer DL (1971) Logic design of digital systems. Allyn & Bacon, Boston

    Google Scholar 

  • Doya K (2011) Bayesian brain: probabilistic approaches to neural coding. MIT Press, Cambridge

    Google Scholar 

  • Dwivedy P, Potnis A, Soofi S, Giri P (2017) Performance comparison of various filters for removing different image noises. In: 2017 international conference on recent innovations in signal processing and embedded systems (RISE). IEEE, pp 181–186

  • Fitch FB (1944) McCulloch Warren S. and Pitts Walter. A logical calculus of the ideas immanent in nervous activity. Bulletin of mathematical biophysics, vol. 5 (1943), pp. 115–133. J Symb Log 9(02):49–50

    Article  Google Scholar 

  • Gal A, Eytan D, Wallach A, Sandler M, Schiller J, Marom S (2010) Dynamics of excitability over extended timescales in cultured cortical neurons. J Neurosci 30(48):16332–16342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerstner W, Sprekeler H, Deco G (2012) Theory and simulation in neuroscience. Science 338(6103):60–65

    Article  CAS  PubMed  Google Scholar 

  • Gheorghe M, Konur S, Ipate F (2016) Kernel P Systems and Stochastic P Systems for modelling and formal verification of genetic logic gates. In: Emergence, complexity and computation advances in unconventional computing, pp 661–675

  • Gilja V, Nuyujukian P, Chestek CA, Cunningham JP, Yu BM, Fan JM, Churchland MM, Kaufman MT, Kao JC, Ryu SI, Shenoy KV (2012) A high-performance neural prosthesis enabled by control algorithm design. Nat Neurosci 15(12):1752–1757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldental A (2014) A computational paradigm for dynamic logic-gates in neuronal activity. Front Comput Neurosci 8:52

    Article  PubMed  PubMed Central  Google Scholar 

  • Gutiérrez-Naranjo MA, Leporati A (2009) First steps towards a CPU made of spiking neural P systems. Int J Comput Commun Control 4(3):244

    Article  Google Scholar 

  • Hodgkin AL, Huxley AF (1952) Currents carried by sodium and potassium ions through the membrane of the giant axon ofLoligo. J Physiol 116(4):449–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proceedings of the national academy of sciences 79(8):2554–2558

  • Hunt LT, Kolling N, Soltani A, Woolrich MW, Rushworth MFS, Behrens TEJ (2012) Mechanisms underlying cortical activity during value-guided choice. Nat Neurosci 15(3):470–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ionescu M, Ishdorj T-O (2005) Boolean circuits and a DNA algorithm in membrane computing. In: International Workshop on Membrane Computing (pp. 272–291). Springer, Berlin, Heidelberg.

  • Ionescu M, Sburlan D (2008) Several applications of spiking neural P systems. Comput Inform 27:515–528

    Google Scholar 

  • Ionescu M, Păun A, Păun G, Pérez-Jiménez MJ (2006) Computing with spiking neural P systems: traces and small universal systems. In: International Workshop on DNA-Based Computers (pp. 1–16). Springer, Berlin, Heidelberg

  • Ionescu M, Păun G, Pérez-Jiménez MJ, Rodríguez-Patón A (2011) Spiking neural P systems with several types of spikes. Int J Comput Commun Control 6(4):647

    Article  Google Scholar 

  • Izhikevich E (2004) Which model to use for cortical spiking neurons? IEEE Trans Neural Netw 15(5):1063–1070

    Article  PubMed  Google Scholar 

  • Izhikevich EM (2006) Polychronization: computation with spikes. Neural Comput 18(2):245–282

    Article  PubMed  Google Scholar 

  • Izhikevich EM, Hoppensteadt FC (2009) Polychronous wavefront computations. Int J Bifurc Chaos 19(05):1733–1739

    Article  Google Scholar 

  • Jain L, Lim C (2014) Advances in bio-inspired computing: techniques and applications. Neurocomputing 125:183

    Article  Google Scholar 

  • Jifara W, Jiang F, Rho S, Cheng M, Liu S (2019) Medical image denoising using convolutional neural network: a residual learning approach. J Supercomput 75(2):704–718

    Article  Google Scholar 

  • Li X, Wang Z, Lu W, Chen Z, Wang Y, Shi X (2015) A Spiking neural system based on DNA strand displacement. J Comput Theor Nanosci 12(2):298–304

    Article  CAS  Google Scholar 

  • Litwin-Kumar A, Doiron B (2012) Slow dynamics and high variability in balanced cortical networks with clustered connections. Nat Neurosci 15(11):1498–1505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maass W (1997) Networks of spiking neurons: the third generation of neural network models. Neural Netw 10(9):1659–1671

    Article  Google Scholar 

  • Macías-Ramos LF, Pérez-Jiménez MJ (2013) Spiking neural P systems with functional astrocytes. In: Membrane computing lecture notes in computer science, pp 228–242

  • Maini PK, Baker RE, Chuong C-M (2006) Developmental biology: the turing model comes of molecular age. Science 314(5804):1397–1398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maragos P, Schafer RW (1990) Morphological systems for multidimensional signal processing. Proc IEEE 78(4):690–710

    Article  Google Scholar 

  • Mazzoni A, Panzeri S, Logothetis NK, Brunel N (2008) Encoding of naturalistic stimuli by local field potential spectra in networks of excitatory and inhibitory neurons. PLoS Comput Biol 4(12):e1000239

    Article  PubMed  PubMed Central  Google Scholar 

  • Mehonic A, Kenyon AJ (2022) Brain-inspired computing needs a master plan. Nature 604(7905):255–260

    Article  CAS  PubMed  Google Scholar 

  • Mertzios BG, Tsirikolias K (1998) Coordinate logic filters and their applications in image processing and pattern recognition. Circuits Syst Signal Process 17(4):517–538

    Article  Google Scholar 

  • Mo L, Wang M (2021) LogicSNN: a unified spiking neural networks logical operation paradigm. Electronics 10(17):2123

    Article  Google Scholar 

  • Nahin PJ (2017) The logician and the engineer: how George Boole and Claude Shannon created the information age. Princeton University Press, Princeton

    Book  Google Scholar 

  • Nakagawa Y, Rosenfeld A (1978) A note on the use of local rain and max operations in digital picture processing. IEEE Trans Syst Man Cybern SMC-8(8):632–635

    Google Scholar 

  • Nazari S (2019) Spiking pattern recognition using informative signal of image and unsupervised biologically plausible learning. Neurocomputing 330:196–211

    Article  Google Scholar 

  • Nazari S, Faez K (2019) Novel systematic mathematical computation based on the spiking frequency gate (SFG): Innovative organization of spiking computer. Inf Sci 474:221–235

    Article  Google Scholar 

  • Nazari S, Faez K, Janahmadi M (2018) A new approach to detect the coding rule of the cortical spiking model in the information transmission. Neural Netw 99:68–78

    Article  PubMed  Google Scholar 

  • Neumann JV (1956) Probabilistic logics and the synthesis of reliable organisms from unreliable components. Autom Stud 34:43–98

    Google Scholar 

  • Pan T, Shi X, Zhang Z, Xu F (2018) A small universal spiking neural P system with communication on request. Neurocomputing 275:1622–1628

    Article  Google Scholar 

  • Parkes AP (2002) Turing machines as computers. In: Introduction to languages, machines and logic, pp 179–201, Springer, London

  • Park YS, Lek S (2016) Artificial neural networksnetworks: Multilayer perceptron for ecological modeling. In Developments in environmental modelling 28:123–140

  • Qian L, Winfree E, Bruck J (2011) Neural network computation with DNA strand displacement cascades. Nature 475(7356):368–372

    Article  CAS  PubMed  Google Scholar 

  • Rosenblatt F (1958) The perceptron: a probabilistic model for information storage and organization in the brain. Psychol Rev 65(6):386–408

    Article  CAS  PubMed  Google Scholar 

  • Rullen RV, Thorpe SJ (2001) Rate coding versus temporal order coding: what the retinal ganglion cells tell the visual cortex. Neural Comput 13(6):1255–1283

    Article  PubMed  Google Scholar 

  • Serra J (1983) Image analysis and morphological filters. Academic Press, New York

    Google Scholar 

  • Serra J, Vincent L (1992) An overview of morphological filtering. Circuits Syst Signal Process 11(1):47–108

    Article  Google Scholar 

  • Shannon CE (1938) A symbolic analysis of relay and switching circuits. Electr Eng 57(12):713–723

    Article  Google Scholar 

  • Sharif SMA, Naqvi RA, Biswas M (2020) Learning medical image denoising with deep dynamic residual attention network. Mathematics 8(12):2192

    Article  Google Scholar 

  • Shi X, Wang Z, Deng C, Song T, Pan L, Chen Z (2014) A Novel bio-sensor based on DNA strand displacement. PLoS ONE 9(10):e108856

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi X, Wu X, Song T, Li X (2016) Construction of DNA nanotubes with controllable diameters and patterns using hierarchical DNA sub-tiles. Nanoscale 8(31):14785–14792

    Article  CAS  PubMed  Google Scholar 

  • Shoemaker PA (2019) Neural network model for detection of edges defined by image dynamics. Front Comput Neurosci 13:76

    Article  PubMed  PubMed Central  Google Scholar 

  • Song T, Zheng P, Wong MD, Wang X (2016) Design of logic gates using spiking neural P systems with homogeneous neurons and astrocytes-like control. Inf Sci 372:380–391

    Article  Google Scholar 

  • Stoianov I, Zorzi M (2012) Emergence of a ‘visual number sense’ in hierarchical generative models. Nature Neurosci 15(2):194–196

  • Sutton RS (1992) Introduction: the challenge of reinforcement learning. In: Reinforcement learning (pp. 1–3). Springer, Boston, MA

  • Tsifikolias K, Mertzios BG (1993) Edge extraction and enhancement using coordinate logic filters. In: Proceedings of the international conference on image processing: theory and applications, San Remo, Italy, June 14–16, pp 251–254

  • Tsirikolias K, Mertzios BG (1991) Logic filters in image processing. In: Proceedings of the international conference on digital signal processing, Florence, Italy, Sept. 4–6, pp 285–287

  • Turing AM (1937) On computable numbers, with an application to the entscheidungsproblem. Proc Lond Math Soc s2-42(1):230–265

    Article  Google Scholar 

  • Turing AM (1938) On computable numbers, with an application to the Entscheidungsproblem. A correction. Proc Lond Math Soc 2–43(1):544–546

    Article  Google Scholar 

  • Vardi R, Timor R, Marom S, Abeles M, Kanter I (2012) Synchronization with mismatched synaptic delays: a unique role of elastic neuronal latency. Europhys Lett: EPL 100(4):48003

    Article  CAS  Google Scholar 

  • Vardi R, Guberman S, Goldental A, Kanter I (2013) An experimental evidence-based computational paradigm for new logic-gates in neuronal activity. Europhys Lett: EPL 103(6):66001

    Article  CAS  Google Scholar 

  • Yen N, Hsu C-H, Jin Q, Kao O (2018) Special issue on ‘Advances in human-like intelligence towards next-generation web.’ Neurocomputing 279:1–2

    Article  Google Scholar 

  • Zhang J, Zhu Y, Pan Y, Li T (2016) Efficient parallel Boolean matrix based algorithms for computing composite rough set approximations. Inf Sci 329:287–302

    Article  Google Scholar 

  • Zhang K, Zuo W, Chen Y, Meng D, Zhang L (2017) Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans Image Process 26(7):3142–3155

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soheila Nazari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazari, S., Keyanfar, A. & Van Hulle, M.M. Spiking image processing unit based on neural analog of Boolean logic operations. Cogn Neurodyn 17, 1649–1660 (2023). https://doi.org/10.1007/s11571-022-09917-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-022-09917-9

Keywords

Navigation