Skip to main content
Log in

Spontaneous analogising caused by text stimuli in design thinking: differences between higher- and lower-creativity groups

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

Understanding the cognitive processes used in creative practices is essential to design research. In this study, electroencephalography was applied to investigate the brain activations of visual designers when they responded to various types of word stimuli during design thinking. Thirty visual designers were recruited, with the top third and bottom third of the participants divided into high-creativity (HC) and low-creativity (LC) groups. The word stimuli used in this study were two short poems, adjectives with similar meanings, and adjectives with opposing meanings. The derived results are outlined as follows: (1) the brain activations of the designers increased in the frontal and right temporal regions and decreased in the right prefrontal region; (2) the negative association between the right temporal and middle frontal regions was notable; (3) the differences in activations caused by distinct word stimuli varied between HC and LC designers; (4) the spectral power in the middle frontal region of HC designers was lower than that of LC designers during the short love poem task; (5) the spectral power in the bilateral temporal regions of HC designers was higher than that of LC designers during the short autumn poem task; (6) the spectral power in the frontoparietal region of HC designers was lower than that of LC designers during the similar concept task; and (7) the spectral power in the frontoparietal and left frontotemporal regions of HC designers was higher than that of LC designers during the opposing concept task.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abraham A (2014) Creative thinking as orchestrated by semantic processing vs. cognitive control brain networks. Front Hum Neurosci 8, Article 95

  • Aichelburg C, Urbanski M, de Schotten MT, Humbert F, Levy R, Volle E (2016) Morphometry of left frontal and temporal poles predicts analogical reasoning abilities. Cereb Cortex 26:915–932

    Article  PubMed  Google Scholar 

  • Alexiou K, Zamenopoulos T, Johnson JH, Gilbert SJ (2009) Exploring the neurological basis of design cognition using brain imaging: some preliminary results. Des Stud 30(6):623–647

    Article  Google Scholar 

  • Aziz-Zadeh L, Liew S-L, Dandekar F (2013) Exploring the neural correlates of visual creativity. Soc Cogn Affect Neurosci 8(4):475–480

    Article  PubMed  Google Scholar 

  • Baldo JV, Schwartz S, Wilkins D, Dronkers NF (2006) Role of frontal versus temporal cortex in verbal fluency as revealed by voxel-based lesion symptom mapping. J Int Neuropsychol Soc 12:896–900

    Article  PubMed  Google Scholar 

  • Boccia M, Piccardi L, Palermo L, Nori R, Palmiero M (2015) Where do bright ideas occur in our brain? Meta-analytic evidence from neuroimaging studies of domain-specific creativity. Front Psychol 6, Article 1195

  • Boutonnet B, Lupyan G (2015) Words jump-start vision: a label advantage in object recognition. J Neurosci 35(25):9329–9335

    Article  CAS  PubMed  Google Scholar 

  • Brunet N, Bosman CA, Roberts M, Oostenveld R, Womelsdorf T, De Weerd P, Fries P (2015) Visual cortical gamma-band activity during free viewing of natural images. Cereb Cortex 25(4):918–926

    Article  PubMed  Google Scholar 

  • Bunge SA, Burrows B, Wagner AD (2004) Prefrontal and hippocampal contributions to visual associative recognition: interactions between cognitive control and episodic retrieval. Brain Cogn 56(2):141–152

    Article  CAS  PubMed  Google Scholar 

  • Cantero JL, Atienza M, Gómez CM, Salas RM (1999) Spectral structure and brain mapping of human alpha activities in different arousal states. Neuropsychobiology 39(2):110–116

    Article  CAS  PubMed  Google Scholar 

  • Casasanto D (2003) Hemispheric specialization in prefrontal cortex: Effects of verbalizability, imageability and meaning. J Neurolinguist 16:361–382

    Article  Google Scholar 

  • Davis MH, Meunier F, Marslen-Wilson WD (2004) Neural responses to morphological, syntactic, and semantic properties of single words: an fMRI study. Brain Lang 89:439–449

    Article  PubMed  Google Scholar 

  • De Pisapia N, Bacci F, Parrott D, Melcher D (2017) Brain networks for visual creativity: a functional connectivity study of planning a visual artwork. Sci Rep 6, Article 39185

  • De Souza LC, Guimarães HC, Teixeira AL, Caramelli P, Levy R, Dubois B, Volle E (2014) Frontal lobe neurology and the creative mind. Front Psychol 5, Article 761

  • Fine EM, Delis DC, Dean D, Beckman V, Miller BL, Rosen HJ, Kramer JH (2009) Left frontal lobe contributions to concept formation: a quantitative MRI study of D-KEFS sorting test performance. J Clin Exp Neuropsychol 31(5):624–631

    Article  PubMed  Google Scholar 

  • Gough HG (1979) A creative personality scale for the adjective checklist. J Pers Soc Psychol 37:1398–1405

    Article  Google Scholar 

  • Grady CL, McIntosh AR, Rajah MN, Craik IM (1998) Neural correlates of the episodic encoding of pictures and words. Proc Nat Acad Sci PNAS 95:2703–2708

    Article  CAS  PubMed  Google Scholar 

  • Grützner C, Wibral M, Sun M, Rivolta D, Singer W, Maurer K, Uhlhaas PJ (2013) Deficits in high- (>60 Hz) gamma-band oscillations during visual processing in schizophrenia. Front Hum Neurosci 7, Article 88

  • Henry JD, Crawford JR (2004) A meta-analytic review of verbal fluency performance following focal cortical lesions. Neuropsychology 18:284–295

    Article  PubMed  Google Scholar 

  • Herrmann CS, Fründ I, Lenz D (2010) Human gamma-band activity: a review on cognitive and behavioural correlates and network models. Neurosci Biobehav Rev 34(7):981–992

    Article  PubMed  Google Scholar 

  • Kambe J, Kakimoto Y, Araki O (2015) Phase reset affects auditory-visual simultaneity judgment. Cogn Neurodyn 9(5):487–493

    Article  PubMed  PubMed Central  Google Scholar 

  • Kang JH, Jeong JW, Kim HT, Kim SH, Kim SP (2014) Representation of cognitive reappraisal goals in frontal gamma oscillations. PLoS ONE 9(11):e113375

    Article  PubMed  PubMed Central  Google Scholar 

  • Kelley WM, Miezin FM, McDermott KB et al (1998) Hemispheric specialization in human dorsl frontal cortex and medial temporal lobe for verbal and nonverbal encoding. Neuron 20:927–936

    Article  CAS  PubMed  Google Scholar 

  • Kowatari Y, Lee SH, Yamamura H, Nagamori Y, Levy P, Yamane S, Yamamoto M (2009) Neural networks involved in artistic creativity. Hum Brain Mapp 30(5):1678–1690

    Article  PubMed  Google Scholar 

  • Lavigne F, Longrée D, Mayaffre D, Mellet S (2016) Semantic integration by pattern priming: experiment and cortical network model. Cogn Neurodyn 10(6):513–533

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang C, Hsu Y, Chang C-C, Lin L-J (2013) In search of an index of imagination for virtual experience designers. Int J Technol Des Educ 23(4):1037–1046

    Article  Google Scholar 

  • Liang C, Lin C-T, Yao S-N, Chang W-S, Liu Y-C, Chen S-A (2017) Visual attention and association: an electroencephalography study in expert designers. Des Stud 48:76–95

    Article  Google Scholar 

  • Liu Y-C, Liang C (2017) Investigating how the brain activations of visual attention differ among designers with different levels of creativity. In: Delagarza D (ed) New developments in visual attention research. Nova Science Publishers, Hauppauge, pp 167–194

    Google Scholar 

  • Liu Y, Wang R, Zhang Z, Jiao X (2010) Analysis on stability of neural network in the presence of inhibitory neurons. Cogn Neurodyn 4(1):61–68

    Article  PubMed  Google Scholar 

  • Liu Y-C, Yang Y-H, Liang C (2017) How do creativity levels and stimulus types matter? A preliminary investigation of designer visual association. J Neurol Neurosci 8(2), article 185, 1–13

  • Maillard L, Barbeau EJ, Baumann C, Koessler L, Bénar C, Chauvel P, Liégeois-Chauvel C (2010) From perception to recognition memory: Time course and lateralization of neural substrates of word and abstract picture processing from perception to recognition memory. J Cogn Neurosci 23(4):782–800

    Article  PubMed  Google Scholar 

  • Mas-Herrero E, Ripollés P, HajiHosseini A, Rodríguez-Fornells A, Marco-Pallarés J (2015) Beta oscillations and reward processing: coupling oscillatory activity and hemodynamic responses. Neuroimage 119:13–19

    Article  PubMed  Google Scholar 

  • Mayseless N, Shamay-Tsoory SG (2015) Enhancing verbal creativity: modulating creativity by altering the balance between right and left inferior frontal gyrus with tDGS. Neuroscience 291:167–176

    Article  CAS  PubMed  Google Scholar 

  • Perfetti CA, Frishkoff GA (2008) The neural bases of text and discourse processing. In: Stemmer B, Whitaker HA (eds) Handbook of the neuroscience of language. Elsevier, New York, pp 165–174

    Chapter  Google Scholar 

  • Schoenberg PLA, Speckens AEM (2015) Multi-dimensional modulations of α and γ cortical dynamics following mindfulness-based cognitive therapy in Major Depressive Disorder. Cogn Neurodyn 9(1):13–29

    Article  PubMed  Google Scholar 

  • Seitamaa-Hakkarainen P, Huotilainen M, Mäkelä M, Groth C, Hakkarainen K (2014) The promise of cognitive neuroscience in design studies. In: Lim Y, Niedderer K, Redström J, Stolterman E, Valtonen A (eds) Proceedings of DRS 2014: design’s big debates: design research society biennial international conference, 16–19 June, Umeå, Sweden, pp 834–846

  • Stewart L, Henson R, Kampe K, Walsh V, Turner R, Frith U (2003) Brain changes after learning to read and play music. Neuroimage 20:71–83

    Article  PubMed  Google Scholar 

  • Szpunar KK, Chan JC, McDermott KB (2009) Contextual processing in episodic future thought. Cereb Cortex 19(7):1539–1548

    Article  PubMed  Google Scholar 

  • Tang Y, Chorlian DB, Rangaswamy M, Porjesz B, Bauer L, Kuperman S, O’Connor S, Rohrbaugh J, Schuckit M, Stimus A, Begleiter H (2007) Genetic influences on bipolar EEG power spectra. Int J Psychophysiol 65(1):2–9

    Article  PubMed  Google Scholar 

  • Tanji K, Suzuki K, Delorme A, Shamoto H, Nakasato N (2005) High-frequency gamma-band activity in the basal temporal cortex during picture-naming and lexical-decision tasks. J Neurosci 25(13):3287–3293

    Article  CAS  PubMed  Google Scholar 

  • Thompson-Schill SL, Ramscar M, Chrysikou GE (2009) Cognition without control: when a little frontal lobe goes a long way. Curr Dir Psychol Sci 18(5):259–263

    Article  PubMed  PubMed Central  Google Scholar 

  • Vanderwolf CH (2000) Are neocortical gamma waves related to consciousness? Brain Res 855(2):217–224

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Li X, Yang Y (2014) A review on the cognitive function of information structure during language comprehension. Cogn Neurodyn 8(5):353–361

    Article  PubMed  PubMed Central  Google Scholar 

  • Wisniewski I, Wendling AS, Manning L, Steinhoff BJ (2012) Visuo-spatial memory tests in right temporal lobe epilepsy foci: clinical validity. Epilepsy Behav 23(3):254–260

    Article  PubMed  Google Scholar 

  • Yao S-N, Lin C-T, King J-T, Liu Y-C, Liang C (2017) Learning in the visual association of novice and expert designers. Cogn Syst Res 43:76–88

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaoyun Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, YC., Chang, CC., Yang, YH.S. et al. Spontaneous analogising caused by text stimuli in design thinking: differences between higher- and lower-creativity groups. Cogn Neurodyn 12, 55–71 (2018). https://doi.org/10.1007/s11571-017-9454-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-017-9454-0

Keywords

Navigation