Skip to main content

Advertisement

Log in

Nanomaterials in Cosmetic Products: the Challenges with regard to Current Legal Frameworks and Consumer Exposure

  • Original Paper
  • Published:
NanoEthics Aims and scope Submit manuscript

Abstract

Nanotechnology-enabled cosmetic products (NCPs) have been accessible in the market for the last 30 years. More than 250 products have been commercialized in the global market potentially exposing two billion people. These products are present in all formulations including creams, powders, lotions, and sprays. These involve contact with all body especially skin and mucosae; other tissues like airways and gastrointestinal tract can be reached by accidental exposure. Due to the size, NCPs exhibit an increased surface area volume ratio and biodistribution that potentially augments their reactivity compared with bulk materials, which raises concerns for consumer’s safety. Consumers are attracted by the novel properties and functions of nano-enabled products but expose to technologies where no legal frameworks have been implemented to prevent potential side effects. Here, we review the current gaps between the commercialization process of NCPs and the regulatory frameworks to assess these products in USA, Europe, Japan, and Latin America prior and after commercialization. We identify the requirements for a proper assessment of the potential hazard of nanomaterials (NMs) in cosmetics considering the nanomaterial properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Allied Market Research (2016) Cosmetics market size, share, industry trends and analysis. Allied Market Research, Portland

  2. Allied Market Research (2017) HIV drug market is expected to reach $26,458 million by 2022, globally. Allied Market Research, Portland

  3. Allied Market Research (2016) Regenerative medicine market to reach $30,237 million, globally, by 2022. Allied Market Research, Portland

  4. Euromonitor (2017) Euromonitor Cosmetic Market [Online]. Available: http://www.euromonitor.com. Accessed 20 Mar 2017

  5. L’Oréal (2016) L’Oréal annual report 2016: cosmetics market. L'Oréal, Paris

  6. World Bank (2016) Botswana: population, total | data [Online]. Available: http://data.worldbank.org/indicator/SP.POP.TOTL. Accessed 02 Apr 2017

  7. Owh C, Chee PL, Loh XJ (2016) A global analysis of the personal care market. In: Polymers for personal care products and cosmetics. Royal Society of Chemistry, Cambridge, pp 1–17

  8. Mu L, Sprando RL (2010) Application of nanotechnology in cosmetics. Pharm Res 27(8):1746–1749

    Article  Google Scholar 

  9. DeLouise LA (2012) Applications of nanotechnology in dermatology. J Invest Dermatol 132:964–975

    Article  Google Scholar 

  10. Fakhravar Z, Ebrahimnejad P, Daraee H, Akbarzadeh A (2016) Nanoliposomes: synthesis methods and applications in cosmetics. J Cosmet Laser Ther 18(3):174–181

    Article  Google Scholar 

  11. Palmberg C, Dernis H, Miguet C (2009) Nanotechnology: an overview based on indicators and statistics. OECD, Paris

  12. Vance ME, Kuiken T, Vejerano EP, McGinnis SP, Hochella MF Jr, Rejeski D, Hull MS (2015) Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotechnol 6(1):1769–1780

    Article  Google Scholar 

  13. Foss Hansen S, Heggelund LR, Revilla Besora P, Mackevica A, Boldrin A, Baun A (2016) Nanoproducts—what is actually available to European consumers? Environ Sci Nano 3(1):169–180

    Article  Google Scholar 

  14. Raj S, Jose S, Sumod US, Sabitha M (2012) Nanotechnology in cosmetics: opportunities and challenges. J Pharm Bioallied Sci 4(3):186–193

    Article  Google Scholar 

  15. Vinardell MP, Llanas H, Marics L, Mitjans M (2017) In vitro comparative skin irritation induced by nano and non-nano zinc oxide. Nanomaterials (Basel) 7(3):56

    Article  Google Scholar 

  16. Aschberger K, Micheletti C, Sokull-Klüttgen B, Christensen FM (2011) Analysis of currently available data for characterising the risk of engineered nanomaterials to the environment and human health—lessons learned from four case studies. Environ Int 37(6):1143–1156

    Article  Google Scholar 

  17. Nohynek GJ, Antignac E, Re T, Toutain H (2010) Safety assessment of personal care products/cosmetics and their ingredients. Toxicol Appl Pharmacol 243(2):239–259

    Article  Google Scholar 

  18. Betton CI (2007) Global regulatory issues for the cosmetics industry. Volume 1. William Andrew, Norwich, NY

  19. Lodén M, Beitner H, Gonzalez H, Edström DW, Åkerström U, Austad J, Buraczewska-Norin I, Matsson M, Wulf HC (2011) Sunscreen use: controversies, challenges and regulatory aspects. Br J Dermatol 165(2):255–262

    Article  Google Scholar 

  20. Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627

    Article  Google Scholar 

  21. Savolainen K, Backman U, Brouwer D, Fadeel B, Fernandes T (2013) Nanosafety in Europe 2015–2025: towards safe and sustainable nanomaterials and nanotechnology innovations. Finnish Institute of Occupational Health, Helsinki

  22. European Parliament (2009) Regulation (EC) No 1223/2009 of the European Parliament and of the Council of 30 November 2009 on cosmetic products. European Parliament, Brussels

  23. European Commission (2013) 2013/674/EU: Commission Implementing Decision of 25 November 2013 on Guidelines on Annex I to Regulation (EC) No 1223/2009 of the European Parliament and of the Council on Cosmetic Products. European Union, Luxembourg

  24. International Cooperation on Cosmetic Regulation (ICCR) (2011) Outcome of the Meeting held June 28 to July 1st, 2011. ICCR, Paris

  25. Wang H, Zhao X, He C (2016) Innovative permeation and antifouling properties of PVDF ultrafiltration membrane with stepped hollow SiO2 microspheres in membrane matrix. Mater Lett 182:376–379

    Article  Google Scholar 

  26. Make-up composition producing a change in colour on application, September 2016, US Grant US9433804B2

  27. Gupta R, Rai B (2017) Effect of size and surface charge of gold nanoparticles on their skin permeability: a molecular dynamics study. Sci Rep 7:45292

    Article  Google Scholar 

  28. Nikolić S, Keck CM, Anselmi C, Müller RH (2011) Skin photoprotection improvement: synergistic interaction between lipid nanoparticles and organic UV filters. Int J Pharm 414(1–2):276–284

    Article  Google Scholar 

  29. Boverhof DR, Bramante CM, Butala JH, Clancy SF, Lafranconi M, West J, Gordon SC (2015) Comparative assessment of nanomaterial definitions and safety evaluation considerations. Regul Toxicol Pharmacol 73(1):137–150

    Article  Google Scholar 

  30. Guadagnini R, Halamoda Kenzaoui B, Walker L, Pojana G, Magdolenova Z, Bilanicova D, Saunders M, Juillerat-Jeanneret L, Marcomini A, Huk A, Dusinska M, Fjellsbø LM, Marano F, Boland S (2015) Toxicity screenings of nanomaterials: challenges due to interference with assay processes and components of classic in vitro tests. Nanotoxicology 9(sup1):13–24

    Article  Google Scholar 

  31. Bergfeld WF, Belsito DV, Marks JG, Andersen FA (2005) Safety of ingredients used in cosmetics. J Am Acad Dermatol 52(1):125–132

    Article  Google Scholar 

  32. Trademarkia (2006) COLLAGEN FUSION Trademark of AmerElite Solutions, Inc.. Serial Number: 76654706 [Online]. Available: https://www.trademarkia.com/collagenfusion-76654706.html. Accessed 22 Sep 2017

  33. Trademarkia (2004): LIPODUCTION Trademark of OSMOTICS, LLC. Serial Number: 78235334 [Online]. Available: https://www.trademarkia.com/lipoduction-78235334.html. Accessed 22 Sep 2017

  34. Trademarkia (2007): ZELENS Trademark of Lens, Marko, MR.. Serial Number: 78563502 [Online]. Available: https://www.trademarkia.com/zelens-78563502.html. Accessed 22 Sep 2017

  35. NeimanMarcus (n.d.): Lancome Hydra Flash Bronzer Daily Face Moisturizer [not online anymore; last accessed 22 Sep 2017

  36. L’Oréal (n.d.): Revitalift Anti-Aging & Anti-Wrinkle Skincare Products [Online]. Available: https://www.lorealparisusa.com/products/skin-care/brand/revitalift.aspx. Accessed 15 Jun 2017

  37. Taiwan Trade (n.d.): Nano-Infinity Nanotech Co. [Online]. Available: https://www.taiwantrade.com/company/nano-infinity-nanotech-co-ltd-17593.html. Accessed 15 Jun 2017

  38. Bacterial medical nano suppository for woman and its preparing process, May 2005, CN Grant CN1202868C

  39. Amazon (n.d.): LA Science Anti Hair-loss Serum [Online]. Available: https://www.amazon.co.uk/LA-Science-Anti-Hair-loss-Serum/dp/B001O37BCW. Accessed 15 Jun 2017

  40. Dior (n.d.): Diorskin Forever [Online]. Available: http://www.dior.com/beauty/en_us/fragrance-beauty/makeup/face/foundation/pr-foundation-y0770800-perfect-makeup-everlasting-wear-pore-refining-effect.html. Accessed 15 Jun 2017

  41. Cor-Silver (n.d.): Cor Silver Skincare [Online]. Available: https://corsilver.com. Accessed 15 Jun 2017

  42. SH Pharma Co. (n.d.): Ag Nano Phytoncide Toothpaste [Online]. Available: http://shpharma.tradekorea.com/product/detail/P270701/Ag-Nano-Phytoncide-Toothpaste.html?minisiteprodgroupno=30666. Accessed 15 Jun 2017

  43. Sanchez VC, Jachak A, Hurt RH, Kane AB (2012) Biological interactions of graphene-family nanomaterials: an interdisciplinary review. Chem Res Toxicol 25(1):15–34

    Article  Google Scholar 

  44. Zhao J, Castranova V (2011) Toxicology of nanomaterials used in nanomedicine. J Toxicol Environ Health B Crit Rev 14(8):593–632

    Article  Google Scholar 

  45. Chen Y, Liu L (2012) Modern methods for delivery of drugs across the blood-brain barrier. Adv Drug Deliv Rev 64(7):640–665

    Article  Google Scholar 

  46. Bergin IL, Witzmann FA (2013) Nanoparticle toxicity by the gastrointestinal route: evidence and knowledge gaps. Int J Biomed Nanosci Nanotechnol 3(1–2):163-210

    Article  Google Scholar 

  47. Luanpitpong S, Wang L, Castranova V, Rojanasakul Y (2014) Induction of stem-like cells with malignant properties by chronic exposure of human lung epithelial cells to single-walled carbon nanotubes. Part Fibre Toxicol 11:22

    Article  Google Scholar 

  48. Muller J, Huaux F, Moreau N, Misson P, Heilier JF, Delos M, Arras M, Fonseca A, Nagy JB, Lison D (2005) Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmacol 207(3):221–231

    Article  Google Scholar 

  49. Jacobsen NR, Møller P, Alstrup Jensen K, Vogel U, Ladefoged O, Loft S, Wallin H (2009) Lung inflammation and genotoxicity following pulmonary exposure to nanoparticles in ApoE−/− mice. Part Fibre Toxicol 6:2

  50. Kolosnjaj-Tabi J, Just J, Hartman KB, Laoudi Y, Boudjemaa S, Alloyeau D, Szwarc H, Wilson LJ, Moussa F (2015) Anthropogenic carbon nanotubes found in the airways of Parisian children. EBioMedicine 2(11):1697–1704

    Article  Google Scholar 

  51. Waters KM, Masiello LM, Zangar RC, Tarasevich BJ, Karin NJ, Quesenberry RD, Bandyopadhyay S, Teeguarden JG, Pounds JG, Thrall BD (2009) Macrophage responses to silica nanoparticles are highly conserved across particle sizes. Toxicol Sci 107(2):553–569

    Article  Google Scholar 

  52. Song Y, Tang S (2011) Nanoexposure, unusual diseases, and new health and safety concerns. ScientificWorldJournal 11:1821–1828

    Article  Google Scholar 

  53. Ma-hock L, Strauss V, Treumann S, Küttler K, Wohlleben W, Hofmann T (2013) Comparative inhalation toxicity of multi-wall carbon nanotubes, graphene, graphite nanoplatelets and low surface carbon black. Part Fibre Toxicol 10:23

  54. Wang L, Wang L, Ding W, Zhang F (2010) Acute toxicity of ferric oxide and zinc oxide nanoparticles in rats. J Nanosci Nanotechnol 10(12):8617–8624

    Article  Google Scholar 

  55. Cao Y, Jacobsen NR, Danielsen PH, Lenz AG, Stoeger T, Loft S, Wallin H, Roursgaard M, Mikkelsen L, Møller P (2014) Vascular effects of multiwalled carbon nanotubes in dyslipidemic ApoE-/- mice and cultured endothelial cells. Toxicol Sci 138(1):104–116

    Article  Google Scholar 

  56. Li Z, Hulderman T, Salmen R, Chapman R, Leonard SS, Young SH, Shvedova A, Luster MI, Simeonova PP (2007) Cardiovascular effects of pulmonary exposure to single-wall carbon nanotubes. Environ Health Perspect 115(3):377–382

    Article  Google Scholar 

  57. Corbalan JJ, Medina C, Jacoby A, Malinski T, Radomski MW (2012) Amorphous silica nanoparticles aggregate human platelets: potential implications for vascular homeostasis. Int J Nanomedicine 7:631–639

    Article  Google Scholar 

  58. Abdelhalim MAK (2011) The effects of size and period of administration of gold nanoparticles on rheological parameters of blood plasma of rats over a wide range of shear rates: in vivo. Lipids Health Dis 10:191

    Article  Google Scholar 

  59. Faedmaleki F, Shirazi FH, Salarian AA, Ahmadi Ashtiani H, Rastegar H (2014) Toxicity effect of silver nanoparticles on mice liver primary cell culture and HepG2 cell line. Iran J Pharm Res 13(1):235–242

  60. Neerman MF, Zhang W, Parrish AR, Simanek EE (2004) In vitro and in vivo evaluation of a melamine dendrimer as a vehicle for drug delivery. Int J Pharm 281(1–2):129–132

    Article  Google Scholar 

  61. Møller P, Christophersen DV, Jensen DM, Kermanizadeh A, Roursgaard M, Jacobsen NR, Hemmingsen JG, Danielsen PH, Cao Y, Jantzen K, Klingberg H, Hersoug LG, Loft S (2014) Role of oxidative stress in carbon nanotube-generated health effects. Arch Toxicol 88(11):1939–1964

    Article  Google Scholar 

  62. Chen Z, Meng H, Xing G, Chen C, Zhao Y, Jia G, Wang T, Yuan H, Ye C, Zhao F, Chai Z, Zhu C, Fang X, Ma B, Wan L (2006) Acute toxicological effects of copper nanoparticles in vivo. Toxicol Lett 163(2):109–120

    Article  Google Scholar 

  63. Reddy ARN, Reddy YN, Krishna DR, Himabindu V (2010) Multi wall carbon nanotubes induce oxidative stress and cytotoxicity in human embryonic kidney (HEK293) cells. Toxicology 272(1–3):11–16

    Article  Google Scholar 

  64. Zhao J, Li N, Wang S, Zhao X, Wang J, Yan J, Ruan J, Wang H, Hong F (2010) The mechanism of oxidative damage in the nephrotoxicity of mice caused by nano-anatase TiO2. J Exp Nanosci 5:447–462

    Article  Google Scholar 

  65. Ivanov S, Zhuravsky S, Yukina G, Tomson V, Korolev D, Galagudza M (2012) In vivo toxicity of intravenously administered silica and silicon nanoparticles. Materials (Basel) 5(12):1873–1889

    Article  Google Scholar 

  66. Lee S, Khang D, Kim S-H (2015) High dispersity of carbon nanotubes diminishes immunotoxicity in spleen. Int J Nanomedicine 10:2697–2710

    Article  Google Scholar 

  67. Deng X, Wu F, Li Z, Luo M, Li L, Ni Q, Jiao Z, Wu M, Liu Y (2009) The splenic toxicity of water soluble multi-walled carbon nanotubes in mice. Carbon 47(6):1421–1428

  68. Máté Z, Horváth E, Kozma G, Simon T, Kónya Z, Paulik E, Papp A, Szabó A (2016) Size-dependent toxicity differences of intratracheally instilled manganese oxide nanoparticles: conclusions of a subacute animal experiment. Biol Trace Elem Res 171(1):156–166

    Article  Google Scholar 

  69. Feng X, Chen A, Zhang Y, Wang J, Shao L, Wei L (2015) Central nervous system toxicity of metallic nanoparticles. Int J Nanomedicine 10(1):4321–4340

    Google Scholar 

  70. Hu R, Zheng L, Zhang T, Gao G, Cui Y, Cheng Z, Cheng J, Hong M, Tang M, Hong F (2011) Molecular mechanism of hippocampal apoptosis of mice following exposure to titanium dioxide nanoparticles. J Hazard Mater 191(1–3):32–40

    Article  Google Scholar 

  71. Ema M, Hougaard KS, Kishimoto A, Honda K (2016) Reproductive and developmental toxicity of carbon-based nanomaterials: a literature review. Nanotoxicology 10(4):391–412

    Article  Google Scholar 

  72. Domeradzka-Gajda K, Nocuń M, Roszak J, Janasik B, Quarles Jr. CD, Wąsowicz W, Grobelny J, Tomaszewska E, Celichowski G, Ranoszek-Soliwoda K, Cieślak M, Puchowicz D, Gonzalez JJ, Russo RE, Stępnik M (2017) A study on the in vitro percutaneous absorption of silver nanoparticles in combination with aluminum chloride, methyl paraben or di-n-butyl phthalate. Toxicol Lett 272:38–48

    Article  Google Scholar 

  73. Zhang L, Yu W, Colvin V, Monteiroriviere N (2008) Biological interactions of quantum dot nanoparticles in skin and in human epidermal keratinocytes. Toxicol Appl Pharmacol 228(2):200–211

    Article  Google Scholar 

  74. Pierzchała K, Lekka M, Magrez A, Kulik AJ, Forró L, Sienkiewicz A (2012) Photocatalytic and phototoxic properties of TiO2-based nanofilaments: ESR and AFM assays. Nanotoxicology 6:813–824

    Article  Google Scholar 

  75. Santamaria A. and Sayes C. M. (2010) Toxicological studies with nanoscale materials. In: Hull M, Bowman D (ed) Nanotechnology Environmental Health and Safety. 1st edn. William Andrew. pp 3-47

  76. Pauwels M, Rogiers V (2004) Safety evaluation of cosmetics in the EU. Reality and challenges for the toxicologist. Toxicol Lett 151(1):7–17

    Article  Google Scholar 

  77. Bowman IE (2010) Consumer Product Safety Commission: CPSIA implementation. In Bowman IE (ed) Consumer Product Safety Commission issues. Nova Science Publishers, Hauppauge, pp 69-83

  78. Díez-Sales O., Nacher A., Merino M., Merino V. (2018) Alternative Methods to Animal Testing in Safety Evaluation of Cosmetic Products. In: Salvador A., Chisvert A (ed). Analysis of Cosmetic Products, 2nd edn. Elsevier, Valencia, pp 551-584

  79. Rhomberg RH, Goodman JE, Lewandowski TA (2010) Comprehensive toxicology. Elsevier, Kidlington

  80. Lynch I, Weiss C, Valsami-Jones E (2014) A strategy for grouping of nanomaterials based on key physico-chemical descriptors as a basis for safer-by-design NMs. Nano Today 9(3):266–270

    Article  Google Scholar 

  81. Riebeling C, Luch A, Götz ME (2016) Comparative modeling of exposure to airborne nanoparticles released by consumer spray products. Nanotoxicology 10(3):343–351

    Article  Google Scholar 

  82. Karlsson HL, Gustafsson J, Cronholm P, Möller L (2009) Size-dependent toxicity of metal oxide particles—a comparison between nano- and micrometer size. Toxicol Lett 188(2):112–118

    Article  Google Scholar 

  83. US Food and Drug Administration (FDA) (2017) Nutrition, laboratory methods—BAM: microbiological methods for cosmetics. FDA, Silver Spring

  84. Lin P-C, Lin S, Wang PC, Sridhar R (2014) Techniques for physicochemical characterization of nanomaterials. Biotechnol Adv 32(4):711–726

    Article  Google Scholar 

  85. Pauwels M, Rogiers V (2010) Human health safety evaluation of cosmetics in the EU: a legally imposed challenge to science. Toxicol Appl Pharmacol 243(2):260–274

    Article  Google Scholar 

  86. Guinée JB, Heijungs R, Huppes G, Zamagni A, Masoni P, Buonamici R,  Ekvall T, Rydberg T (2011) Life cycle assessment: past, present, and future. Environ Sci Technol 45(1):90–96

  87. Kapoor S, Saraf S (2008) Risk analysis tools for toxicological profile of cosmetics Internet J Toxicol 5:2

  88. Fiorino DJ (2010) Voluntary initiatives, regulation, and nanotechnology oversight: charting a path. WWICS, Washington DC

  89. US Food and Drug Administration (FDA) (2015) MedWatch: the FDA safety information and adverse event reporting program [Online]. Available: https://www.fda.gov/safety/medwatch. Accessed: 02 Apr 2017

  90. US Food and Drug Administration (FDA) (2012) Guidance documents—guidance for industry: safety of nanomaterials in cosmetic products. FDA, Silver Spring

  91. Basketter D, White I (2016) Legislative aspects of cosmetic safety in the European Union: the case of contact allergy. Cosmetics 3(2):17

    Article  Google Scholar 

  92. Scientific Committee on Consumer Safety (SCCS) (2015) Notes of Guidance for the Testing of Cosmetic Ingredients and their Safety Evaluation, 9th revision, 29 September 2015, SCCS/1564/15, revision of 25 April 2016. European Union, Brussels

  93. ISO (2012) ISO/TR 13014:2012 Nanotechnologies—guidance on physico-chemical characterization of engineered nanoscale materials for toxicologic assessment. ISO/TC 229 Nanotechnologies

  94. Scientific Committee on Consumer Safety (SCCS) (2013) Commission implementation decision of 25 November 2013 on guidelines on Annex I to Regulation (EC) no 1223/2009 of the European Parliament and of the council on cosmetic products. European Union, Brussels

  95. SCCS (2016) The SCCS notes of guidance for the testing of cosmetic ingredients and their safety evaluation. http://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_o_190.pdf. Accessed 9 May 2018

  96. EU-Japan Centre for Industrial Cooperation (2009) Seminar Report 2009-6. Industrial Policy Seminar Series “Cosmetics regulation in the EU and Japan”. EU-Japan Centre for Industrial Cooperation

  97. Kishimoto A (2010) Public perception of nanotechnologies in Japan from 2005 to 2009 [Online]. Available: https://staff.aist.go.jp/kishimoto-atsuo/nano/nano_20052009_e.pdf. Accessed 11 May 2018

  98. Mercosur (1991) MERCOSUR/CMC/DEC. N°04/91. Consejo del Mercado Común del Sur, Brasilia

  99. Comunidad Andina de Naciones (2003) Comunidad Andina—Decisión 563. Comisión de la Comunidad Andina

  100. Consejo del Mercado Común del Sur (2011) Mercosur/GMC/Resolución No 24/11. Consejo del Mercado Común del Sur, Asuncion

  101. Mercosur (2008) Mercosur/Resolución No 49/08. Consejo del Mercado Común del Sur

  102. JETRO (2011) Guidebook for export to Japan 2011 (cosmetics). JETRO

  103. Hampton T (2006) Nanotechnology task force. JAMA 296(12):1458–1458

    Google Scholar 

  104. European Commission (2004) Towards a European strategy for nanotechnology. European Union, Luxembourg

  105. Musazzi UM, Marini V, Casiraghi A, Minghetti P (2017) Is the European regulatory framework sufficient to assure the safety of citizens using health products containing nanomaterials? Drug Discov Today 22(6):870–882

    Article  Google Scholar 

  106. International Cooperation on Cosmetic Regulation (ICCR) (2010) Nanotechnology in cosmetic products: criteria and methods of detection. ICCR, Toronto

  107. Direction générale de la concurrence, de la consommation et de la répression des fraudes (DGCCRF) (n.d.) Contrôle de la présence de nanoparticules dans les produits alimentaires et les cosmétiques par la DGCCRF [Online]. Available: https://www.economie.gouv.fr/dgccrf/controle-presence-nanoparticules-dans-produits-alimentaires-et-cosmetiques-par-dgccrf. Accessed 27 Feb 2018

Download references

Acknowledgements

This material was supported partially by Colciencias Scholarship to promote doctoral students in Colombia under the Francisco Jose de Caldas program (2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Candace S. J. Tsai.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pastrana, H., Avila, A. & Tsai, C.S.J. Nanomaterials in Cosmetic Products: the Challenges with regard to Current Legal Frameworks and Consumer Exposure. Nanoethics 12, 123–137 (2018). https://doi.org/10.1007/s11569-018-0317-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11569-018-0317-x

Keywords

Navigation