Skip to main content
Log in

Uncertainty principles and time frequency analysis related to the Riemann–Liouville operator

  • Published:
ANNALI DELL'UNIVERSITA' DI FERRARA Aims and scope Submit manuscript

Abstract

We define and study the windowed Fourier transform, called also the Gabor transform, associated with singular partial differential operators defined on the half plane \(]0,+\infty [\times \mathbb {R}\). We prove a Plancherel theorem and an inversion formula that we use to establish the classical Heisenberg uncertainty principle. Next, we study this transform on subsets of \(([0,+\infty [\times \mathbb {R})^2\) with finite measures, in particular we establish a well generalized Heisenberg–Pauli–Weyl uncertainty principle for this transform (with general magnitude). Also, we check a local uncertainty principle and we give nice applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amri, B., Rachdi, L.T.: The Littlewood–Paley \(g\)-function associated with the Riemann–Liouville operator. Ann. Univ. Paedagog. Crac. Stud. Math. 12, 31–58 (2013)

    MathSciNet  MATH  Google Scholar 

  2. Amri, B., Rachdi, L.T.: Uncertainty principle in terms of entropy for the Riemann–Liouville operator. Bull. Malays. Math. Sci. Soc. (2016). https://doi.org/10.1007/s40840-015-0121-5

  3. Amri, B., Rachdi, L.T.: Beckner logarithmic uncertainty principle for the Riemann–Liouville operator. Int. J. Math. 24(9), 1350070 (2013). (29 pages)

    Article  MathSciNet  MATH  Google Scholar 

  4. Amri, B., Rachdi, L.T.: Calderon-reproducing formula for singular partial differential operators. Integral Transforms Spec. Funct. 25(8), 597–611 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Baccar, C., Hamadi, N.B., Rachdi, L.T.: Inversion formulas for the Riemann–Liouville transform and its dual associated with singular partial differential operators. Int. J. Math. Math. Sci. 2006, 1–26 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Baccar, C., Hamadi, N.B., Rachdi, L.T.: Best approximation for Weierstrass transform connected with Riemann–Liouville operator. Commun. Math. Anal. 5(1), 65–83 (2008)

    MathSciNet  MATH  Google Scholar 

  7. Baccar, C., Rachdi, L.T.: Spaces of \(D_{L^p}\)-type and a convolution product associated with the Riemann–Liouville operator. Bull. Math. Anal. Appl. 1(3), 16–41 (2009)

    MathSciNet  MATH  Google Scholar 

  8. Boggiatto, P., Carypis, E., Oliaro, A.: Local uncertainty principles for the Cohen class. J. Math. Anal. Appl. 419(2), 1004–1022 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cohen, L.: The uncertainty principle for the short-time Fourier transform. Pro. Int. Soc. Opt. Eng. 22563, 80–90 (1995)

    Google Scholar 

  10. Erdélyi, A., et al.: Tables of Integral Transforms, vol. 2. Mc Graw-Hill Book Company, New York (1954)

    MATH  Google Scholar 

  11. Erdélyi, A.: Asymptotic Expansions. Dover Publications, New York (1956)

    MATH  Google Scholar 

  12. Folland, G.B., Sitaram, A.: The uncertainty principle: a mathematical survey. J. Fourier Anal. Appl. 3(3), 207–238 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gabor, D.: Theory of communication. J. Inst. Electr. Eng. 93(26), 429–457 (1946)

    Google Scholar 

  14. Gröchenig, K.H.: Foundations of Time–Frequency Analysis. Birkhauser, Boston (2001)

    Book  MATH  Google Scholar 

  15. Gröchenig, K.: Uncertainty principles for time-frequency representations. In: Feichtinger, H.G., Strohmer, T. (eds.) Advances in Gabor Analysis, pp. 11–30. Birkhauser, Boston (2003)

    Chapter  Google Scholar 

  16. Havin, V., Jöricke, B.: The Uncertainty Principle in Harmonic Analysis. Springer, Berlin (1994)

    Book  MATH  Google Scholar 

  17. Hogan, J.A., Lakey, J.D.: Time-frequency and time-scale methods: Adaptive decompositions, uncertainty principles, and sampling. Applied and numerical harmonic analysis. Birkhäuser Boston. Basel, Berlin (2007)

    MATH  Google Scholar 

  18. Lebedev, N.N.: Special Functions and Their Applications. Dover Publications, New York (1972)

    MATH  Google Scholar 

  19. Omri, S., Rachdi, L.T.: An \(L^p-L^q\) version of Morgan’s theorem associated with Riemann–Liouville transform. Int. J. Math. Anal. 1(17), 805–824 (2007)

    MathSciNet  MATH  Google Scholar 

  20. Omri, S., Rachdi, L.T.: Heisenberg–Pauli–Weyl uncertainty principle for the Riemann–Liouville Operator. J. Inequal. Pure Appl. Math. 9(3), Art 88 (2008)

  21. Price, J.F.: Inequalities and local uncertainty principles. J. Math. phys. 24(7), 1711–1714 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  22. Price, J.F.: Sharp local uncertainty inequalities. Stud. Math. 85, 37–45 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rachdi, L.T., Rouz, A.: On the range of the Fourier transform connected with Riemann–Liouville operator. Ann. Math. Blaise Pascal 16(2), 355–397 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Saitoh, S.: Theory of Reproducing Kernels and Its Applications. Longman Scientific Technical, Harlow (1988)

    MATH  Google Scholar 

  25. Trimèche, K.: Transformation intégrale de Weyl et théorème de Paley-Wiener associés à un opérateur différentiel singulier sur \((0,+\infty )\). J. Math. Pures Appl. 60, 51–98 (1981)

    MathSciNet  MATH  Google Scholar 

  26. Watson, G.N.: A Treatise on the Theory of Bessel Functions, 2nd edn. Cambridge University Press, Cambridge (1959)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lakhdar Tannech Rachdi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rachdi, L.T., Amri, B. & Hammami, A. Uncertainty principles and time frequency analysis related to the Riemann–Liouville operator. Ann Univ Ferrara 65, 139–170 (2019). https://doi.org/10.1007/s11565-018-0311-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11565-018-0311-9

Keywords

Mathematics Subject Classification

Navigation