Skip to main content
Log in

Insights into fungal communities colonizing the acarosphere in a forest soil habitat

  • Original Article
  • Published:
Mycological Progress Aims and scope Submit manuscript

Abstract

Knowledge on the diversity and ecology of microfungi associated with soil-dwelling mites is rather limited. To get insights into associations between the two highly diverse groups, we studied composition and potential function of mite-associated fungal communities occurring in soil. Two different mite species living in temperate region pine forest soil were screened for associated fungi. The fungal community was assessed by restriction fragment length polymorphism (RFLP) analyses in a predatory (Leptogamasus obesus) and a predominantly saprobic (Oppiella subpectinata) mite species as well as in the organic soil layer. Key fungi were identified by sequencing, and community composition was exemplarily compared between the RFLP and a 454 metabarcoding approach. Composition of the fungal communities differed between mite species and between mites and organic soil layer. The mites were predominantly associated with Zygomycota, less frequently with Ascomycota, and rarely with Basidiomycota. The bulk soil was colonized by roughly equal proportions of the three phyla. Fungal taxa being known to exhibit chitinolytic activity were predominantly restricted to mites. Compositional and functional differences between the communities suggest that mites represent a particular microhabitat for fungi, the “acarosphere.” This mobile habitat may contribute to nutrient cycling by combining fungal and animal decomposition activities and serve as vector for soil-inhabiting fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Altre JA, Vandenberg JD (2001) Penetration of cuticle and proliferation in hemolymph by Paecilomyces fumosoroseus isolates that differ in virulence against lepidopteran larvae. J Invertebr Pathol 78:81–86

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  PubMed  CAS  Google Scholar 

  • Bałazy S, Miętkiewski R, Tkaczuk C, Wegensteiner R, Wrzosek (2008) Diversity of acaropathogenic fungi in Poland and other European countries. Exp Appl Acarol 46(1–4):53–70

    Article  PubMed  Google Scholar 

  • Baral HO, Krieglsteiner L (2006) Hymenoscyphus subcarneus, a little known bryicolous discomycete found in the Białowieża National Park. Acta Mycol 41:11–20

    Article  Google Scholar 

  • Barbehenn RV, Maben RE, Knoester JJ (2008) Linking phenolic oxidation in the midgut lumen with oxidative stress in the midgut tissues of a tree-feeding caterpillar Malacosoma disstria (Lepidoptera: Lasiocampidae). Environ Entomol 37:1113–1118

    Article  PubMed  Google Scholar 

  • Batra LR (1963) Ecology of ambrosia fungi and their dissemination by beetles. Trans Kans Acad Sci 66(2):213–236

    Article  Google Scholar 

  • Beaton G, Weste G (1980) Vibrissea: two North American species redescribed and a new Javan species. Trans Br Mycol Soc 75:243–248

    Article  Google Scholar 

  • Behan VM, Hill SB (1978) Feeding habits and spore dispersal of oribatid mites in the North America arctic. Rev Ecol Biol Sol 15(4):497–516

    Google Scholar 

  • Benjamin RK (1962) A new Basidiobolus that forms microspores. Aliso 5:223–233

    Article  Google Scholar 

  • Berlese A (1905) Apparecchio per raccogliere presto ed in gran numeropiccoliartropodi. Redia 2:85–89

    Google Scholar 

  • Blackwell M (1994) Minute mycological mysteries: the influence of arthropods on the lives of fungi. Mycologia 86(1):1–17

    Article  Google Scholar 

  • Blackwell M, Malloch D (1989) Similarity of Amphoromorpha and secondary capilliconidia of Basidiobolus. Mycologia 81:735–741

    Article  Google Scholar 

  • Böer E, Mock HP, Bode R, Gellissen G, Kunze G (2005) An extracellular lipase from the dimorphic yeast Arxula adeninivorans: molecular cloning of the ALIP1 gene and characterization of the purified recombinant enzyme. Yeast 22:523–535

    Article  PubMed  CAS  Google Scholar 

  • Bonants PJM, Fitters PFL, Thijs H, den Belder E, Waalwijk C, Henfling JWDM (1995) A basic serine protease from Paecilomyces lilacinus with biological activity against Meloidogyne hapla eggs. Microbiology 141:775–784

    Article  PubMed  CAS  Google Scholar 

  • Brabcová V, Nováková M, Davidová A, Baldrian P (2016) Dead fungal mycelium in forest soil represents a decomposition hotspot and a habitat for a specific microbial community. New Phytol 2017:1369–1381

    Article  CAS  Google Scholar 

  • Brakhage AA, Schroeckh V (2011) Fungal secondary metabolites—strategies to activate silent gene clusters. Fungal Genet Biol 48(1):15–22

    Article  PubMed  CAS  Google Scholar 

  • Brockett BF, Prescott CE, Grayston SJ (2012) Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada. Soil Biol Biochem 44(1):9–20

    Article  CAS  Google Scholar 

  • Buee M, Reich M, Murat C, Morin E, Nilsson RH, Uroz S, Martin F (2009) 454-Pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytol 184(2):449–456

    Article  PubMed  CAS  Google Scholar 

  • Buryn R (2008) Einfluss forstlicher Maßnahmen auf Raubmilben (Gamasida, Acari) temperierter mitteleuropäischer Wälder. Dissertation, Technische Universität Darmstadt

  • Büttner R, Bode R, Birnbaum D (1991) Comparative study of external and internal P-glucosidases and glucoamylase of Arxula adeninivorans. J Basic Microbiol 31:423–428

    Article  Google Scholar 

  • Caldwell BA, Jumpponen A, Trappe JM (2000) Utilization of major detrital substrates by dark-septate root endophytes. Mycologia 92:230–232

    Article  Google Scholar 

  • Cannon PF, Kirk PM (2007) Fungal families of the world. CAB International, Wallingford, Oxfordshire

    Book  Google Scholar 

  • Chambers SM, Burke RM, Brooks PR, Cairney JWG (1999) Molecular and biochemical evidence for manganese-dependent peroxidase activity in Tylospora fibrillosa. Mycol Res 103:1098–1102

    Article  CAS  Google Scholar 

  • Chandler D, Davidson G, Pell JK, Ball BV, Shaw K, Sunderland KD (2000) Fungal biocontrol of Acari. Biocontrol Sci Tech 10:357–384

    Article  Google Scholar 

  • Chao A (1984) Nonparametric estimation of the number of classes in a population. Scand J Stat 11:265–270

    Google Scholar 

  • Chao A (1987) Estimating the population size for capture-recapture data with unequal catchability. Biometrics 43:783–791

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Xu L-L, Liu B, Liu X-Z (2007) Taxonomy of Dactylella complex and Vermispora. II. The genus Dactylella. Fungal Divers 26:85–126

    Google Scholar 

  • Christ S, Wubet T, Theuerl S, Herold N, Buscot F (2011) Fungal communities in bulk soil and stone compartments of different forest and soil types as revealed by a barcoding ITS rDNA and a functional laccase encoding gene marker. Soil Biol Biochem 43:1292–1518

    Article  CAS  Google Scholar 

  • Chuang SC, Ho H-M (2011) The merosporangiferous fungi from Taiwan (VIII): two new records of Coemansia (Kickxellales, Kickxellomycotina). Taiwania 56:295–300

    Google Scholar 

  • Ciegler A (1978) Fungi that produce mycotonxins: conditions and occurrence. Mycopathologie 65(1–3):5–11

    Article  CAS  Google Scholar 

  • Clemmensen KE, Bahr E, Ovaskainen O, Dahlberg A, Ekblad A, Wallander H, Stenlid J, Finlay RD, Wardle DA, Lindahl BD (2013) Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science 339(6127):1615–1618

    Article  PubMed  CAS  Google Scholar 

  • Coleman DC (1986) The role of microfloral and faunal interactions in affecting soil processes. In: Microfloral and faunal interactions in natural and agro-ecosystems. Springer, Netherlands, pp 317–348

    Chapter  Google Scholar 

  • Coleman DC (1985) Through a ped darkly: an ecological assessment of root­soil-microbial-faunal interactions. In: Fitter AH, Atkinson D, Read DJ, Usher MB (eds) Ecological interactions in soil. British Ecological Society, special publication: 1–21. Blackwell Scientific, Oxford

  • Coremans-Pelseneer J (1974) Biologie des champignons du genre Basidiobolus Eidam 1886. Saprophytisme et pouvoir pathogène. Acta Zoologica et Pathologica 60:7–143

    Google Scholar 

  • Crowther TW, Jones TH, Boddy L, Baldrian P (2011) Invertebrate grazing determines enzyme production by basidiomycete fungi. Soil Biol Biochem 43:2060–2068

    Article  CAS  Google Scholar 

  • Dijkstra EF, Boon JJ, Van Mourik JM (1998) Analytical pyrolysis of a soil profile under scots pine. Eur J Soil Sci 49:295–304

    Article  Google Scholar 

  • Dix NJ (1985) Changes in relationship between water content and water potential after decay and its significance for fungal successions. Trans Br Mycol Soc 85:649–653

    Article  Google Scholar 

  • Domsch KH, Gams W, Anderson TH. 2007. Compendium of soil fungi: IHW Verlag

    Google Scholar 

  • Drechsler C (1947) A Basidiobolus producing elongated secondary conidia with adhesive beaks. Bulletin of the Torrey Botanical Club 74:403–423

    Article  Google Scholar 

  • Drechsler C (1956) Supplementary developmental stages of Basidiobolus ranarum and Basidiobolus haptosporus. Mycologia 48:655–676

    Article  Google Scholar 

  • Dromph KM (2001) Dispersal of entomopathogenic fungi by colembolans. Soil Biol Biochem 33:2047–2051

    Article  CAS  Google Scholar 

  • Ebermann E, Hall M (2004) First record of sporothecae within the mite family Scutacaridae (Acari, Tarsonemina). Zoologischer Anzeiger—a Journal of Comparative Zoology 242(4):367–375

    Article  Google Scholar 

  • Ebermann E, Hall M, Hausl-Hofstätter U, Jagersbacher-Baumann JM, Kirschner R, Pfingstl T, Plassnig E (2013) A new phoretic mite species with remarks to the phenonmenon “sporothecae” (Acari, Scutacaridae; Hymenoptera, Aculeata). Zoologischer Anzeiger—a journal of comparative Zoology 252(2):234–242

    Article  Google Scholar 

  • Effmert U, Kalderás J, Warnke R, Piechulla B (2012) Volatile mediated interactions between bacteria and fungi in the soil. J Chem Ecol 38(6):665–703

    Article  PubMed  CAS  Google Scholar 

  • Eisenbeis G (2006) In: König H, Varma A (eds) Intestinal microorganisms of termites and other invertebrates, vol 6. Springer

  • El-Morsy (2000) Fungi isolated from the endorhizosphere of halophytic plants form the Red Sea Coast of Egypt. Fungal Divers 5:43–54

    Google Scholar 

  • Esteves I, Peteira B, Atkins SD, Magan N, Kerry B (2009) Production of extracellular enzymes by different isolates of Pochonia chlamydosporia. Mycol Res 113:867–876

    Article  PubMed  CAS  Google Scholar 

  • Evans HC (1982) Entomogenous fungi in tropical forest ecosystems: an appraisal. Ecological Entomology 7(1):47–60

    Article  Google Scholar 

  • Fenice M, Selbmann L, Zucconi L, Onofri S (1997) Production of extracellular enzymes by Antarctic fungal strains. Polar Biol 17:275–280

    Article  Google Scholar 

  • Flessa F, Kehl A, Kohl M (2010) RFLPtools. R package version 1.0

  • Frankland JC (1998) Fungal succession—unravelling the unpredictable. Mycol Res 102:1–15

    Article  Google Scholar 

  • Freeman C, Ostle N, Fenner N, Kang H (2004) A regulatory role for phenol oxidase during decomposition in peatlands. Soil Biol Biochem 36(10):1663–1667

    Article  CAS  Google Scholar 

  • Friedrich J, Gradišar H, Mandin D (2002) Screening fungi for synthesis of keratinolytic enzymes. Lett Appl Microbiol 28:127–130

    Article  Google Scholar 

  • Fujii T, Fang X, Inoue H, Murakami K, Sawayama S (2009) Enzymatic hydrolyzing performance of Acremonium cellulolyticus and Trichoderma reesei against three lignocellulosic materials. Biotechnol Biofuels 2:1–8

    Article  CAS  Google Scholar 

  • Gabor RS, Eilers K, McKnight DM, Fierer N, Anderson SP (2014) From the litter layer to the saprolite: chemical changes in water-soluble soil organic matter and their correlation to microbial community composition. Soil Biol Biochem 68:166–176

    Article  CAS  Google Scholar 

  • Gallet C (1993) Allelopathic potential in bilberry-spruce forests: influence of phenolic compounds on spruce seedlings. J Chem Ecol 20(5):1009–1024

    Article  Google Scholar 

  • Gams W (1977) A key to the species of Mortierella. Persoonia 9:381–391

    Google Scholar 

  • Gebhardt H, Weiss M, Oberwinkler F (2005) Dryadomyces amasae: a nutritional fungus associated with ambrosia beetles of the genus Amasa (Coleoptera: Curculionidae, Scolytinae). Mycol Res 109(6):687–696

    Article  PubMed  Google Scholar 

  • George E, Marschner H, Jakobsen I (1995) Role of arbuscular mycorrhizal fungi in uptake of phosphorus and nitrogen from soil. Crit Rev Biotechnol 15(3/4):257–270

    Article  Google Scholar 

  • Giri B, Giang P, Kumari R, Prasad R, Sachdev M, Garg A, Oelmüller R, Varma A (2005) Mycorrhizosphere: strategies and function. In: Buscot F, Varma A (eds) Microorganisms in soils: roles in genesis and functions. Springer-Verlag, Berlin Heidelberg, New York, pp 213–252

    Chapter  Google Scholar 

  • Gomez-Hernandez M, Williams-Linera G (2011) Diversity of macromycetes determined by tree species, vegetation structure, and microenvironment in tropical cloud forests in Veracruz, Mexico. Botany 89:203–216

    Article  Google Scholar 

  • Gopinath SCB, Hilda A (2005) Extracellular enzymatic activity profiles in fungi isolated from oil-rich environments. Mycoscience 46:119–126

    Article  CAS  Google Scholar 

  • Gradišar H, Friedrich J, Križaj I, Jerala R (2005) Similarities and specificities of fungal keratinolytic proteases: comparison of keratinases of Paecilomyces marquandii and Doratomyces microsporus to some known proteases. Appl Environ Microbiol 71:3420–3426

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gramss G, Günther TH, Fritsche W (1998) Spot tests for oxidative enzymes in ectomycorrhizal, wood-, and litter decaying fungi. Mycol Res 102:67–72

    Article  CAS  Google Scholar 

  • Guerreiro MA, Brachmann A, Begerow D, Peršoh D (2017) Transient leaf endophytes are the most active fungi in 1-year-old beech leaf litter. Fungal Divers. https://doi.org/10.1007/s13225-017-0390-4

  • Gupta SC, Leathers TD, Wickow DT (1992) Hydrolytic enzymes secreted by Paecilomyces lilacinus cultured on sclerotia of Aspergillus flavus. Appl Microbiol Biotechnol 39:99–103

    Article  Google Scholar 

  • Hagedorn G, Scholler M (1999) A reevaluation of predatory orbiliaceous fungi. I. Phylogenetic analysis using rDNA sequence data. Sydowia 51:27–48

    Google Scholar 

  • Haňáčková Z, Koukol O, Štursová M, Kolařík M, Baldrian P (2015) Fungal succession in the needle litter of a montane Picea abies forest investigated through strain isolation and molecular fingerprinting. Fungal Ecol 13:157–166

    Article  Google Scholar 

  • Harinikumar KM, Bagyaraj DJ (1994) Potential of earthworms, ants, millipedes, and termites for dissemination of vesicular-arbuscular mycorrhizal fungi in soil. Biol Fertil Soils 18:115–118

    Article  Google Scholar 

  • Ho KY, Tsai CC, Juang JS, Chen CP, Lin TC, Lin CC (2010) Antimicrobial activity of tannin components from Vaccinium vitis-idaea L. J Pharm Pharmacol 53:187–191

    Article  Google Scholar 

  • Hofstetter RW, Moser JC (2014) The role of mites in insect-fungus associations. Annu Rev Entomol 59:537–557

    Article  PubMed  CAS  Google Scholar 

  • Högberg MN, Högberg P, Myrold DD (2007) Is microbial community composition in boreal forest soils determined by pH, C-to-N ratio, the trees, or all three? Oecologia 150(4):590–601

    Article  PubMed  Google Scholar 

  • Horn R, Brümmer GW, Kandeler E, Kögel-Knabner I, Kretzschmar R, Stahr K, Wilke BM (2010) Scheffer/Schachtschabel: Lehrbuch der Bodenkunde. Spektrum Akademischer Verlag

  • Hoy MA, Jeyaprakash A (2005) Microbial diversity in the predatory mite Metaseiulus occidentalis (Acari: Phytoseiidae) and its prey, Tetranychus urticae (Acari: Tetranychidae). Biol Control 32(3):427–441

    Article  Google Scholar 

  • Humber RA (2008) Evolution of entomopathogenicity in fungi. J Invertebr Pathol 98(3):262–266

    Article  PubMed  Google Scholar 

  • Iason GR, Hartley SE, Duncan AJ (1993) Chemical composition of Calluna vulgaris (Ericaceae): do responses to fertilizer vary with phenological stage? Biochem Syst Ecol 21:315–321

    Article  CAS  Google Scholar 

  • Ikeda Y, Hayashi H, Okuda N, Park EY (2008) Efficient cellulase production by the filamentous fungus Acremonium cellulolyticus. Biotechnol Prog 23:333–338

    Article  CAS  Google Scholar 

  • Jäderlund A, Zackrisson O, Nilsson M-C (1996) Effects of bilberry (Vaccinium myrtillus L.) litter on seed germination and early seedling growth of four boreal tree species. J Chem Ecol 22(5):973–985

    Article  PubMed  Google Scholar 

  • Jalal MAF, Read DJ (1983) The organic acid composition of Calluna heathland soil with special reference to phyto- and fungitoxicity. Plant Soil 70:257–272

    Article  CAS  Google Scholar 

  • Jarvis B (1971) Factors affecting the production of mycotonxins. J Appl Bacteriol 34(1):199–213

    Article  PubMed  CAS  Google Scholar 

  • Jumpponen A, Johnson LC (2005) Can rDNA analyses of diverse fungal communities in soil and roots detect effects of environmental manipulations—a case study from tallgrass prairie. Mycologia 97:1177–1194

    PubMed  CAS  Google Scholar 

  • Kandeler E, Kampichler C, Joergensen RG, Mölter K (1999) Effects of mesofauna in a spruce forest on soil microbial communities and N cycling in field mesocosms. Soil Biol Biochem 31(13):1783–1792

    Article  CAS  Google Scholar 

  • Kaneko N, McLean MA, Parkinson D (1995) Grazing preference of Onychiurus subtenuis (Collembola) and Oppiella nova (Oribatei) for fungal species inoculated on pine needles. Pedobiologia 39:538–546

    Google Scholar 

  • Karg W, 1993. Acari (Acarina), Milben–Parasitiformes (Anactinochaeta)—Cohors Gamasina Leach—Raubmilben. Die Tierwelt Deutschlands 59. Gustav Fischer Verlag, Jena

  • Kendrick WB (1962) Biological aspects of the decay of Pinus sylvestris leaf litter. Nova Hedwigia 4:313–342

    Google Scholar 

  • Khan A, Williams KL, Nevalainen HKM (2004) Effects of Paecilomyces lilacinus protease and chitinase on the eggshell structures and hatching of Meloidogyne javanica juveniles. Biol Control 31:346–352

    Article  CAS  Google Scholar 

  • Kirk TK, Farrell RL (1987) Enzymatic combustion: the microbial degradation of lignin. Annu Rev Microbiol 41:465–505

    Article  PubMed  CAS  Google Scholar 

  • Kjøller AH, Struwe S (2002) Fungal communities, succession, enzymes, and decomposition. In: Burns RG, Dick RP (eds) Enzymes in the environment—activity ecology and applications. Marcel Dekker, New York, pp 267–284

    Google Scholar 

  • Klarner B (2014) Changes in trophic structure of decomposer communities with land use in Central European temperate forests. Dissertation, Georg-August-Universität Göttingen

  • Kluczek-Turpeinen B, Tuomela M, Hatakka A, Hofrichter M (2003) Lignin degradation in a compost environment by the deuteromycete Paecilomyces inflatus. Appl Microbiol Biotechnol 61:374–379

    Article  PubMed  CAS  Google Scholar 

  • Komonen A (2001) Sturcture of insect communities inhabiting old-growth forest specialist bracket fungi. Ecological Entomology 26(1):63–75

    Article  Google Scholar 

  • Kowalski T, Kehr RD (1994) Two new species of Phialocephala occcurring on Picea and Alnus. Can J Bot 73:26–32

    Article  Google Scholar 

  • Kuzyakov Y, Blagodatskaya E (2015) Microbial hotspots and hot moments in soil: concept & review. Soil Biol Biochem 83:184–199

    Article  CAS  Google Scholar 

  • Lavelle P (1997) Faunal activities and soil processes: adaptive strategies that determine ecosystem function. Adv Ecol Res 27:93–132

    Article  Google Scholar 

  • Lehmitz R, Maraun M (2016) Small-scale spatial heterogeneity of stable isotopes signatures (δ15N, δ13C) in Sphagnum sp. transfers to all trophic levels in oribatid mites. Soil Biol Biochem 100:242–251

    Article  CAS  Google Scholar 

  • Lilleskov EA, Bruns TD (2005) Spore dispersal of a resupinate ectomycorrhizal fungus, Tomentella sublilacina, via soil food webs. Mycologia 97:762–769

    Article  PubMed  Google Scholar 

  • Lin L-C, Lee M-J, Chen J-L (2011) Decomposition of organic matter by the ericoid mycorrhizal endophytes of Formosan rhododendron (Rhododendron formosanum Hemsl.). Mycorrhiza 21:331–339

    Article  PubMed  CAS  Google Scholar 

  • Lindahl BD, Ihrmark K, Boberg J, Trumbore SE, Högberg P, Stenlid J, Finlay RD (2007) Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytol 173:611–620

    Article  PubMed  CAS  Google Scholar 

  • Manning RJ, Waters SD, Callaghan AA (2007) Saprotrophy of Conidiobolus and Basidiobolus in leaf litter. Mycol Res 111:1437–1449

    Article  PubMed  CAS  Google Scholar 

  • Manu M (2010) Structure and dynamics of predator mite populations (Acari-Mesostigmata) in shrub ecosystems in Prahova and Doftana Valleys. Studia Universitatis Babes-Bolyai. Biologia 1:17–30

    Google Scholar 

  • Manu M, Băncilă RI, Onete M (2013) Soil mite communities (Acari: Gamasina) from different ecosystem types from Romania. Belgian Journal of Zoology 143:30–41

    Google Scholar 

  • Maraun M, Visser S, Scheu S (1998) Oribatid mites enhance the recovery of the microbial community after a strong disturbance. Appl Soil Ecol 9(1–3):175–181

    Article  Google Scholar 

  • Marlida Y, Saari N, Hassan Z, Radu S, Bakar J (2000) Purification and characterization of sago starch-degrading glucoamylase from Acremonium sp. endophytic fungus. Food Chem 71:221–227

    Article  CAS  Google Scholar 

  • Marschner P, Crowley D, Yang CH (2004) Development of specific rhizosphere bacterial communities in relation to plant species, nutrition and soil type. Plant Soil 261:199–208

    Article  CAS  Google Scholar 

  • Marshall JJ (1975) Starch-degrading enzymes, old and new. Starch-Stärke 27:377–383

  • Mase T, Matsumiya Y, Mori S, Matsuura A (1996) Purification and characterization of a novel glucoamylase from Acremonium sp. YT-78. J Ferment Bioeng 81:347–350

    Article  CAS  Google Scholar 

  • McLean MA, Parkinson D (2000) Field evidence of the effects of the epigeic earthworm Dendrobaena octaedra on the microfungal community in pine forest floor. Soil Biol Biochem 32(3):351–360

    Article  CAS  Google Scholar 

  • McMinn JW, Crossley DA Jr (1993) Biodiversity and coarse woody debris in southern forests. Proceedings of the workshop on coarse woody debris in southern forests—effects on biodiversity: USDA Forest Service, Southern Research Station, Asheville, NC and University of Georgia, Institute of Ecology, Athens, GA

  • Middelhoven WJ, de Jong IM, de Winter M (1991) Arxula adeninivorans, a yeast assimilating many nitrogenous and aromatic compounds. Antonie Van Leeuwenhoek 59:129–137

    Article  PubMed  CAS  Google Scholar 

  • Mishra P, Singh SK, Nilegaonkar SS (2011) Extracellular chitinase production by some members of the saprophytic Entomophthorales group. Mycoscience 52:271–277

    Article  CAS  Google Scholar 

  • Moore JC, de Ruiter PC (2012) Energetic food webs: an analysis of real and model ecosystems. OUP, Oxford

    Book  Google Scholar 

  • Moore JC, Walter DE, Hunt HW (1988) Arthropod regulation of micro- and mesobiota in below-ground detrital foodwebs. Annu Rev Entomol 33:419–439

    Article  Google Scholar 

  • Moser JC (1985) Use of sporothecae by phoretic Tarsonemus mites to transport asospores of coniferous bluestain fungi. Trans Br Mycol Soc 84(4):750–753

    Article  Google Scholar 

  • Nakashima T, Goto C, Iizuka T (1987) The primary and auxiliary ambrosia fungi isolated from the ambrosia beetles, Scolytoplatypus shogun BLANDFORD (Coleoptera: Scolytidae) and Crossotarsus niponicus BLANDFORD (Coleoptera: Platypodidae). Journal of the Faculty of Agriculture, Hokkaido University 63(2):185–208

    Google Scholar 

  • Nazir R, Warmink JA, Boersma H, van Elsas JD (2010) Mechanisms that promote bacterial fitness in fungal-affected soil microhabitats. FEMS Microbiol Ecol 71(2):169–185

    Article  PubMed  CAS  Google Scholar 

  • Northup RR, Dahlgren RA, McColl JG (1998) Polyphenols as regulators of plant-litter-soil interactions in northern Californias pygmy forest: a positive feedback? Biogeochemistry 42:189–220

    Article  CAS  Google Scholar 

  • O’Brien HE, Parrent JL, Jackson JA, Moncalvo J-M, Vilgalys R (2005) Fungal community analysis by large-scale sequencing of environmental samples. Appl Environ Microbiol 71:5544–5550

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Okafor JI, Gugnani HC, Testratke D, Yangoo BG (1987) Extracellular enzyme activities by Basidiobolus and Conidiobolus isolates on solid media. Mycoses 30:404–407

    Article  CAS  Google Scholar 

  • Okeke CN, Okolo BN (1990) The effect of cultural conditions on the production of lipase by Acremonium strictum. Biotechnol Lett 12:747–750

    Article  CAS  Google Scholar 

  • Pausch J, Kramer S, Scharroba A, Scheunemann N, Butenschoen O, Kandeler E, Marhan S, Riederer M, Scheu S, Kuzyakov Y, Ruess L (2016) Small but active–pool size does not matter for carbon incorporation in below-ground food webs. Funct Ecol 30:479–489

    Article  Google Scholar 

  • Peberdy JF, Turner M (1967) The esterases of Mortierella ramanniana in relation to taxonomy. Microbiology 51:303–312

    Google Scholar 

  • Peršoh D, Theuerl S, Buscot F, Rambold G (2008) Towards a universally adaptable method for quantitative extraction of high-purity nucleic acids from soil. J Microbiol Methods 75:19–24

    Article  PubMed  CAS  Google Scholar 

  • Peršoh D, Melcher M, Flessa F, Rambold G (2010) First fungal community analyses of endophytic ascomycetes associated with Viscum album ssp. austriacum and its host Pinus sylvestris. Fungal Biology 114:585–596

    Article  PubMed  Google Scholar 

  • Peršoh D, Segert J, Zigan A, Rambold G (2013) Fungal community composition shifts along a leaf degradation gradient in a European beech forest. Plant Soil 362:175–186

    Article  CAS  Google Scholar 

  • Peršoh D, Stolle N, Brachmann A, Begerow D, Rambold G (2018) Fungal guilds are evenly distributed along a vertical spruce forest soil profile while individual fungi show pronounced niche partitioning. Mycol Prog. https://doi.org/10.1007/s11557-018-1405-6

  • Poinar G, Poinar R (1998) Parasites and pathogens of mites. Annu Rev Entomol 43:449–469

    Article  PubMed  CAS  Google Scholar 

  • Poinsot-Balaguer N, Racon L, Sadaka N, Le Petit J (1993) Effects of tannin compounds on two species of Collembola. Eur J Soil Biol 29:13–16

    CAS  Google Scholar 

  • Poll C, Brune T, Begerow D, Kandeler E (2009) Small-scale diversity and succession of fungi in the detritusphere of rye residues. Microb Ecol 59:130–140

    Article  PubMed  Google Scholar 

  • Ponge JF (1991) Food resources and diets of soil animals in a small area of Scots pine litter. Geoderma 49:33–62

    Article  Google Scholar 

  • Porras-Alfaro A, Bayman P (2011) Hidden fungi, emergent properties: endophytes and microbiomes. Annu Rev Phytopathol 49:291–315

    Article  PubMed  CAS  Google Scholar 

  • Przybył (2007) Fungi and minerals occurring in heartwood discolorations in Quercus robur trees. Acta Soc Bot Pol 76:55–60

    Article  Google Scholar 

  • Quigley TA, Kelly CT, Doyle EM, Fogarty WM (1998) Patterns of raw starch digestion by the glucoamylase of Cladosporium gossypiicola ATCC 38026. Process Biochem 33:677–681

    Article  CAS  Google Scholar 

  • Quince C, Lanzen A, Curtis TP, Davenport RJ, Hall N, Head IM, Read LF, Sloan WT (2009) Accurate determination of microbial diversity from 454 pyrosequencing data. Nat Methods 6(9):639–641

    Article  PubMed  CAS  Google Scholar 

  • R Development Core Team (2011) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/

  • Remén C (2010) Unravelling the feeding habits of fungivores—interactions between soil fauna and ectomycorrhizal fungi. Dissertation. Swedish University of Agricultural Sciences, Upsala

    Google Scholar 

  • Renker C, Otto P, Schneider K, Zimdars B, Maraun M, Buscot F (2005) Oribatid mites as potential vectors for soil microfungi: study of mite-associated fungal species. Microb Ecol 50(4):518–528

    Article  PubMed  CAS  Google Scholar 

  • Romaní AM, Fischer H, Mille-Lindblom CM, Tranvik LJ (2006) Interactions of bacteria and fungi on decomposing litter: differential extracellular enzyme activities. Ecology 87:2559–2569

    Article  PubMed  Google Scholar 

  • Roy HE, Vega FE, Chandler D (2010) The ecology of fungal entomopathogens. Springer Press

  • Saparrat MCN, Bucsinszky AMM, Tournier HA, Cabello MN, Arambarri AM (2000) Extracellular ABTS-oxidizing activity of autochthonous fungal strains from Argentina in solid medium. Rev Iberoam Micol 17:64–68

    PubMed  CAS  Google Scholar 

  • Schmidt SK, Wilson KL, Meyer AF, Gebauer MM, King AJ (2008) Phylogeny and ecophysiology of opportunistic “snow molds” from a subalpine forest ecosystem. Microb Ecol 56:681–687

    Article  PubMed  CAS  Google Scholar 

  • Schneider K, Maraun M (2005) Feeding preferences among dark pigmented fungal taxa (“Dematiacea”) indicate limited trophic niche differentiation of oribatid mites (Oribatida, Acari). Pedobiologia 49:61–67

    Article  Google Scholar 

  • Seigle-Murandi F, Steiman R, Benoit-Guyod J-L, Guiraud P (1992) Biodegradation of pentachlorophenol by micromycetes. I. Zygomycetes. Environ Toxicol Water Qual 7:125–139

    Article  CAS  Google Scholar 

  • Shaffer RL (1962) The subsection Compactae of Russula. Brittonia 14:254–284

    Article  Google Scholar 

  • Skare NH, Paus F, Raa J (2006) Production of pectinase and cellulase by Cladosporium cucumerinum with dissolved carbohydrates and isolated cell walls of Cucumber as carbon sources. Physiol Plant 33:229–233

    Article  Google Scholar 

  • Smith JL, Papendick RI, Bezdicek DF, Lynch JM (1993) Soil organic matter dynamics and crop residue management. In: Metting FB Jr (ed) Soil Microbial Ecology. Marcel Dekker Inc, New York, pp 65–94

    Google Scholar 

  • Spratt ER (1919) A comparative account of the root-nodules of the Leguminosae. Ann Bot 2:189–199

    Article  Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    Article  PubMed  CAS  Google Scholar 

  • Stirling GR, Mankau R (1979) Mode of parasitism of Meloidogyne and other nemaiode eggs by Dactylella oviparasitica. J Nematol 11:282–288

    PubMed  PubMed Central  CAS  Google Scholar 

  • Stromberger ME, Keith AM, Schmidt O (2012) Distinct microbial and faunal communities and translocated carbon in Lumbricus terrestris drilospheres. Soil Biol Biochem 46:155–162

    Article  CAS  Google Scholar 

  • Suominen K, Kitunen V, Smolander A (2003) Characteristics of dissolved organic matter and phenolic compounds in forest soils under silver birch (Betula pendula), Norway Spruce (Picea abies) and Scots pine (Pinus sylvestris). Eur J Soil Sci 54:287–293

    Article  CAS  Google Scholar 

  • Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems, vol 5. University of California Press

  • Takó M, Kotogán A, Németh B, Radulov I, Nita LD, Tarau D, Dicu D, Tóth B, Papp T, Vágvölgyi C (2012) Extracellular lipase production of zygomycetes fungi isolated from soil. Review on Agriculture and Rural Development 1:62–66

    Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Terashita T, Sakai T, Yoshikawa K, Shishiyama J (1993) Hydrolytic enzymes produced by the genus Mortierella. Trans Mycol Soc Jpn 34:487–494

    CAS  Google Scholar 

  • Thomsen M, Faber JH, Sorensen PB (2012) Soil ecosystem health and services—evaluation of ecological indicators susceptible to chemical stressors. Ecol Indic 16:67–75

    Article  CAS  Google Scholar 

  • Uroz S, Ioannidis P, Lengelle J, Cébron A, Morin E, Buée M, Martin F (2013) Functional assays and metagenomic analyses reveals differences between the microbial communities inhabiting the soil horizons of a Norway spruce plantation. PLoS One 8(2):e55929

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van der Geest LPS (1985) Pathogens of spider mites. In: Helle W, Sabelis MW (eds) Spider mites, Their biology, natural enemies and control. Elsevier Science Publishing, Amsterdam

    Google Scholar 

  • Van der Geest LPS, Elliot SL, Breeuwer JAJ, Beerling EAM (2000) Diseases of mites. Exp Appl Acarol 24(7):497–560

    Article  PubMed  Google Scholar 

  • Vega FE, Blackwell M (eds) (2005) Insect-fungal associations—ecology and evolution. Oxford University Press

  • Wallwork JA (1983) Oribatids in Forest ecosystems. Annu Rev Entomol 28:109–130

    Article  Google Scholar 

  • Walter DE, Proctor HC (1999) Mites – ecology, evolution and behaviour. CABI publishing, Wallingford

    Google Scholar 

  • Wang RB, Yang JK, Lin C, Zhang Y, Zhang KQ (2006) Purification and characterization of an extracellular serine protease from the nematode-trapping fungus Dactylella shizishanna. Lett Appl Microbiol 42:589–594

    PubMed  CAS  Google Scholar 

  • Webster J, Weber RWS (2007) Introduction to fungi. Cambridge Press

  • Weig A, Peršoh D, Werner S, Betzlbacher A, Rambold G (2013) Diagnostic assessment of mycodiversity in environmental samples by fungal ITS1 rDNA length polymorphism. Mycol Prog. https://doi.org/10.1007/s11557-012-0883-1

  • Weigmann G, Miko L (2006) Hornmilben (Oribatida). Goecke & Evers, Keltern

    Google Scholar 

  • Werner S, Peršoh D, Rambold G (2012) Basidiobolus haptosporus is frequently associated with the gamasid mite Leptogamasus obesus. Fungal Biology 116:90–97

    Article  PubMed  Google Scholar 

  • Werner S, Peršoh D, Rambold G (2016) New aspects of the biology of Mortierella alliacea. Mycol Prog 15(12):1293–1301

    Article  Google Scholar 

  • Wilson BJ, Addy HD, Tsuneda A, Hembleton S, Currah RS (2004) Phialocephala sphaeroides sp. nov., a new species among the dark septate endophytes from a boreal wetland in Canada. Can J Bot 82:607–617

    Article  CAS  Google Scholar 

  • Yan-Hong L, Yong J, Wen-Jie W, Bao-You Z (2013) Effect of organic and inorganic carbon on extracellular enzyme activity of acid phosphatase and proteases in three kinds of fungal hyphae. Bull Bot Res 33:404–409

  • Young TWK (1968) Electron microscopic study of asexual spores in Kickxellaceae. New Phytol 67:823–836

    Article  Google Scholar 

  • Zenin CT, Park YK (1983) Purification and characterization of acid α-amylase from Paecilomyces sp. J Ferment Technol 61:109–112

    CAS  Google Scholar 

  • Zhang Z, Schwartz S, Wagner L, Miller W (2000) A greedy algorithm for aligning DNA sequences. J Comput Biol 7:203–214

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Franz Horak (Karlsruhe) and Axel Christian (Görlitz) for the identification of mite species. Christina Leistner (Bayreuth) assisted with the laboratory work.

Funding

The study was supported by the Universität Bayern e.V. (BayEFG, grant no. A4515 – I/3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Werner.

Additional information

Section Editor: Dominik Begerow

Electronic supplementary material

Table S1

(DOC 46 kb)

Table S2

(DOC 40 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Werner, S., Peršoh, D. & Rambold, G. Insights into fungal communities colonizing the acarosphere in a forest soil habitat. Mycol Progress 17, 1067–1085 (2018). https://doi.org/10.1007/s11557-018-1414-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11557-018-1414-5

Keywords

Navigation