Skip to main content
Log in

Protein homology modeling, docking, and phylogenetic analyses of an endo-1,4-β-xylanase GH11 of Colletotrichum lindemuthianum

  • Original Article
  • Published:
Mycological Progress Aims and scope Submit manuscript

Abstract

Endo-1,4-β-xylanase (EC 3.2.1.8) is a crucial enzyme that randomly cleaves the β-1,4-glycosidic linkages of the xylan backbone, releasing xylooligomers of different lengths. The three-dimensional structure of the endo-β-1,4-xylanase protein (xyl1) from Colletotrichum lindemuthianum was modeled and docked with various xylan model compounds. Docking analyses revealed significantly higher stability of C. lindemuthianum XYL1 with the xylopentaose oligomer. Residues interacting with the model oligomers at the respective enzyme active sites were found to be in accord with their role in xylan degradation. Nevertheless, docking analyses of xylanases GH11 from Colletotrichum sp. revealed significative differences in structure, integration of the substrate into the active site, and in the glutamate residues of the catalytic site involved in substrate hydrolysis; of these proteins, 36%, 60%, and 4% integrated xylotetraose, xylopentaose, and xylohexaose in the active site, respectively. Since endoxylanases GH11 from Colletotrichum species interact much more efficiently with xylopentaose and xylotetraose, and xylanases GH11 from different fungi do not seem to have the same substrate binding subsites, we propose that they are enzymes with different affinity to xylooligosaccharides. In agreement with this idea, phylogenetic analyses of xylanases from Colletotrichum sp. show four lineages, suggesting diversifying selection. Most likely, the polydiversity or structural polymolecularity of xylan in plant cell walls processed by these organisms play a determinant role in diversifying selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • André-Leroux G, Berrin J-G, Georis J, Arnaut F, Juge N (2008) Structure-based mutagenesis of Penicillium griseofulvum xylanase using computational design. Proteins Struct Funct Bioinform 72(4):1298–1307. doi:10.1002/prot.22029

    Article  Google Scholar 

  • Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22(2):195–201. doi:10.1093/bioinformatics/bti770

    Article  CAS  PubMed  Google Scholar 

  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28(1):235–242. doi:10.1093/nar/28.1.235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biely P (1985) Microbial xylanolytic systems. Trends Biotechnol 3(11):286–290. doi:10.1016/0167-7799(85)90004-6

    Article  CAS  Google Scholar 

  • Biely P, Vršanská M, Tenkanen M, Kluepfel D (1997) Endo-beta-1,4-xylanase families: differences in catalytic properties. J Biotechnol 57(1–3):151–166

  • Brunner PC, Torriani SF, Croll D, Stukenbrock EH, McDonald BA (2013) Coevolution and life cycle specialization of plant cell wall degrading enzymes in a hemibiotrophic pathogen. Mol Biol Evol 30(6):1337–1347. doi:10.1093/molbev/mst041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cannon PF, Damm U, Johnston PR, Weir BS (2012) Colletotrichum—current status and future directions. Stud Mycol 73(1):181–213. doi:10.3114/sim0014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37(Database issue):D233–D238. doi:10.1093/nar/gkn663

    Article  CAS  PubMed  Google Scholar 

  • Cheng YS, Chen CC, Huang CH, Ko TP, Luo W, Huang JW, Liu JR, Guo RT (2014) Structural analysis of a glycoside hydrolase family 11 xylanase from Neocallimastix patriciarum: insights into the molecular basis of a thermophilic enzyme. J Biol Chem 289(16):11020–11028. doi:10.1074/jbc.M114.550905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi J, Kim K-T, Jeon J, Lee Y-H (2013) Fungal plant cell wall-degrading enzyme database: a platform for comparative and evolutionary genomics in fungi and Oomycetes. BMC Genomics 14(Suppl 5):S7. doi:10.1186/1471-2164-14-s5-s7

    Article  PubMed  PubMed Central  Google Scholar 

  • Cole C, Barber JD, Barton GJ (2008) The Jpred 3 secondary structure prediction server. Nucleic Acids Res 36(Web Server issue):W197–W201. doi:10.1093/nar/gkn238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collins T, Gerday C, Feller G (2005) Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 29(1):3–23. doi:10.1016/j.femsre.2004.06.005

    Article  CAS  PubMed  Google Scholar 

  • Conejo-Saucedo U, Cano-Camacho H, López-Romero E, Villa-Rivera MG, Lara-Márquez A, Zavala-Páramo MG (2016) Cloning and characterization of an endo-β-1,4-xylanase gene from Colletotrichum lindemuthianum and phylogenetic analysis of similar genes from phytopathogenic fungus. Afr J Microbiol Res 10(32):1292–1305. doi:10.5897/ajmr2016.8185

    Article  Google Scholar 

  • Cooper RM, Longman D, Campbell A, Henry M, Lees PE (1988) Enzymic adaptation of cereal pathogens to the monocotyledonous primary wall. Physiol Mol Plant Pathol 32:33–47

  • Crooks GE, Hon G, Chandonia J-M, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14(6):1188–1190. doi:10.1101/gr.849004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies G, Henrissat B (1995) Structures and mechanisms of glycosyl hydrolases. Structure 3(9):853–859

    Article  CAS  PubMed  Google Scholar 

  • de Lemos Esteves F, Ruelle V, Lamotte-Brasseur J, Quinting B, Frère J-M (2004) Acidophilic adaptation of family 11 endo-β-1,4-xylanases: modeling and mutational analysis. Protein Sci : Publ Protein Soc 13(5):1209–1218. doi:10.1110/ps.03556104

  • Dean R, Van Kan JA, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, Rudd JJ, Dickman M, Kahmann R, Ellis J, Foster GD (2012) The top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 13(4):414–430. doi:10.1111/j.1364-3703.2011.00783.x

    Article  PubMed  Google Scholar 

  • Degefu Y, Lohtander K, Paulin L (2004) Expression patterns and phylogenetic analysis of two xylanase genes (htxyl1 and htxyl2) from Helminthosporium turcicum, the cause of northern leaf blight of maize. Biochimie 86(2):83–90. doi:10.1016/j.biochi.2004.01.001

    Article  CAS  PubMed  Google Scholar 

  • Ellouze OE, Loukil S, Marzouki MN (2011) Cloning and molecular characterization of a new fungal xylanase gene from Sclerotinia sclerotiorum S2. BMB Rep 44(10):653–658. doi:10.5483/BMBRep.2011.44.10.653

    Article  CAS  PubMed  Google Scholar 

  • Gan P, Ikeda K, Irieda H, Narusaka M, O’Connell RJ, Narusaka Y, Takano Y, Kubo Y, Shirasu K (2013) Comparative genomic and transcriptomic analyses reveal the hemibiotrophic stage shift of Colletotrichum fungi. New Phytol 197(4):1236–1249. doi:10.1111/nph.12085

    Article  CAS  PubMed  Google Scholar 

  • Geer LY, Marchler-Bauer A, Geer RC, Han L, He J, He S, Liu C, Shi W, Bryant SH (2010) The NCBI BioSystems database. Nucleic Acids Res 38(Database issue):D492–D496. doi:10.1093/nar/gkp858

    Article  CAS  PubMed  Google Scholar 

  • Gilkes NR, Henrissat B, Kilburn DG, Miller RC Jr, Warren RA (1991) Domains in microbial beta-1, 4-glycanases: sequence conservation, function, and enzyme families. Microbiol Rev 55(2):303–315

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gille C, Fähling M, Weyand B, Wieland T, Gille A (2014) Alignment-Annotator web server: rendering and annotating sequence alignments. Nucleic Acids Res 42(Web Server issue):W3–W6. doi:10.1093/nar/gku400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gómez S, Payne AM, Savko M, Fox GC, Shepard WE, Fernandez FJ, Cristina Vega M (2016) Structural and functional characterization of a highly stable endo-β-1,4-xylanase from Fusarium oxysporum and its development as an efficient immobilized biocatalyst. Biotechnol Biofuels 9(1):191. doi:10.1186/s13068-016-0605-z

    Article  PubMed  PubMed Central  Google Scholar 

  • Gruber K, Klintschar G, Hayn M, Schlacher A, Steiner W, Kratky C (1998) Thermophilic xylanase from Thermomyces lanuginosus: high-resolution X-ray structure and modeling studies. Biochemistry 37(39):13475–13485. doi:10.1021/bi980864l

    Article  CAS  PubMed  Google Scholar 

  • Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-Pdb Viewer: an environment for comparative protein modeling. Electrophoresis 18(15):2714–2723. doi:10.1002/elps.1150181505

    Article  CAS  PubMed  Google Scholar 

  • Hakulinen N, Turunen O, Jänis J, Leisola M, Rouvinen J (2003) Three-dimensional structures of thermophilic β-1,4-xylanases from Chaetomium thermophilum and Nonomuraea flexuosa. Eur J Biochem 270:1399–1412. doi:10.1046/j.1432-1033.2003.03496.x

  • Herron SR, Benen JA, Scavetta RD, Visser J, Jurnak F (2000) Structure and function of pectic enzymes: virulence factors of plant pathogens. Proc Natl Acad Sci U S A 97(16):8762–8769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17(8):754–755

    Article  CAS  PubMed  Google Scholar 

  • Hyde KD, Cai L, McKenzie EHC, Yang YL, Zhang JZ, Prihastuti H (2009) Colletotrichum: a catalogue of confusion. Fungal Divers 39:1–17

    Google Scholar 

  • Jänis J, Pulkkinen P, Rouvinen J, Vainiotalo P (2007) Determination of steady-state kinetic parameters for a xylanase-catalyzed hydrolysis of neutral underivatized xylooligosaccharides by mass spectrometry. Anal Biochem 365(2):165–173. doi:10.1016/j.ab.2007.03.034

    Article  PubMed  Google Scholar 

  • Jommuengbout P, Pinitglang S, Kyu KL, Ratanakhanokchai K (2009) Substrate-binding site of family 11 xylanase from Bacillus firmus K-1 by molecular docking. Biosci Biotechnol Biochem 73(4):833–839

    Article  CAS  PubMed  Google Scholar 

  • King BC, Waxman KD, Nenni NV, Walker LP, Bergstrom GC, Gibson DM (2011) Arsenal of plant cell wall degrading enzymes reflects host preference among plant pathogenic fungi. Biotechnol Biofuels 4:4. doi:10.1186/1754-6834-4-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korb O, Stützle T, Exner TE (2009) Empirical scoring functions for advanced protein−ligand docking with PLANTS. J Chem Inf Model 49(1):84–96. doi:10.1021/ci800298z

    Article  CAS  PubMed  Google Scholar 

  • Krengel U, Dijkstra BW (1996) Three-dimensional structure of endo-1,4-beta-xylanase I from Aspergillus niger: molecular basis for its low pH optimum. J Mol Biol 263(1):70–78. doi:10.1006/jmbi.1996.0556

    Article  CAS  PubMed  Google Scholar 

  • Krissinel E, Henrick K (2004) Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr Sect D Biol Crystallogr 60(Pt 12 Pt 1):2256–2268. doi:10.1107/s0907444904026460

    Article  CAS  Google Scholar 

  • Krissinel E, Henrick K (2005) Multiple alignment of protein structures in three dimensions. In: Berthold RM, Glen RC, Diederichs K, Kohlbacher O, Fischer I (eds) Computational life sciences, vol 3695. Lecture notes in computer science. Springer, Berlin, pp 67–78. doi:10.1007/11560500_7

    Google Scholar 

  • Kulkarni N, Lakshmikumaran M, Rao M (1999a) Xylanase II from an alkaliphilic thermophilic Bacillus with a distinctly different structure from other xylanases: evolutionary relationship to alkaliphilic xylanases. Biochem Biophys Res Commun 263(3):640–645. doi:10.1006/bbrc.1999.1420

    Article  CAS  PubMed  Google Scholar 

  • Kulkarni N, Shendye A, Rao M (1999b) Molecular and biotechnological aspects of xylanases. FEMS Microbiol Rev 23(4):411–456

    Article  CAS  PubMed  Google Scholar 

  • Kumar L, Dutt D, Tapas S, Kumar P (2013) Purification, bio-chemical characterization, homology modeling and active site binding mode interactions of thermo-alkali-tolerant β-1,4 endoxylanase from Coprinus cinereus LK-D-NCIM-1369. Biocatalysis Agric Biotechnol 2(3):267–277. doi:10.1016/j.bcab.2013.04.004

    Article  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21):2947–2948. doi:10.1093/bioinformatics/btm404

    Article  CAS  PubMed  Google Scholar 

  • Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26(2):283–291. doi:10.1107/S0021889892009944

    Article  CAS  Google Scholar 

  • Leggio LL, Jenkins J, Harris GW, Pickersgill RW (2000) X-ray crystallographic study of xylopentaose binding to Pseudomonas fluorescens xylanase A. Proteins 41(3):362–373

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Anaya C, Balcázar-López E, Dantán-González E, Folch-Mallol JL (2008) Celulasas fúngicas: Aspectos biológicos y aplicaciones en la industria energética. Rev Latinoam Microbiol 50:119–131

    Google Scholar 

  • Melo F, Feytmans E (1998) Assessing protein structures with a non-local atomic interaction energy. J Mol Biol 277(5):1141–1152. doi:10.1006/jmbi.1998.1665

    Article  CAS  PubMed  Google Scholar 

  • O’Connell RJ, Bailey JA (1988) Differences in the extent of fungal development, host cell necrosis and symptom expression during race-cultivar interactions between Phaseolus vulgaris and Colletotrichum lindemuthianum. Plant Pathol 37(3):351–362. doi:10.1111/j.1365-3059.1988.tb02085.x

    Article  Google Scholar 

  • Paës G, Tran V, Takahashi M, Boukari I, O’Donohue MJ (2007) New insights into the role of the thumb-like loop in GH-11 xylanases. Protein Eng Design Select 20(1):15–23. doi:10.1093/protein/gzl049

    Article  Google Scholar 

  • Paës G, Berrin JG, Beaugrand J (2012a) GH11 xylanases: structure/function/properties relationships and applications. Biotechnol Adv 30(3):564–592. doi:10.1016/j.biotechadv.2011.10.003

    Article  PubMed  Google Scholar 

  • Paës G, Cortés J, Siméon T, O’Donohue MJ, Tran V (2012b) Thumb-loops up for catalysis: a structure/function investigation of a functional loop movement in a GH11 xylanase. Comput Struct Biotechnol J 1:e201207001. doi:10.5936/csbj.201207001

    Article  PubMed  PubMed Central  Google Scholar 

  • Polizeli ML, Rizzatti AC, Monti R, Terenzi HF, Jorge JA, Amorim DS (2005) Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 67(5):577–591. doi:10.1007/s00253-005-1904-7

    Article  CAS  PubMed  Google Scholar 

  • Sabini E, Wilson KS, Danielsen S, Schuelein M, Davies GJ (2001) Oligosaccharide binding to family 11 xylanases: both covalent intermediate and mutant product complexes display (2,5)B conformations at the active centre. Acta Crystallogr Sect D Biol Crystallogr 57(Pt 9):1344–1347

    Article  CAS  Google Scholar 

  • Sapag A, Wouters J, Lambert C, de Ioannes P, Eyzaguirre J, Depiereux E (2002) The endoxylanases from family 11: computer analysis of protein sequences reveals important structural and phylogenetic relationships. J Biotechnol 95(2):109–131

    Article  CAS  PubMed  Google Scholar 

  • Schneider TD, Stephens RM (1990) Sequence logos: a new way to display consensus sequences. Nucleic Acids Res 18(20):6097–6100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sunna A, Antranikian G (1997) Xylanolytic enzymes from fungi and bacteria. Crit Rev Biotechnol 17(1):39–67. doi:10.3109/07388559709146606

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729. doi:10.1093/molbev/mst197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomsen R, Christensen MH (2006) MolDock: a new technique for high-accuracy molecular docking. J Med Chem 49(11):3315–3321. doi:10.1021/jm051197e

    Article  CAS  PubMed  Google Scholar 

  • Törrönen A, Rouvinen J (1995) Structural comparison of two major endo-1,4-xylanases from Trichoderma reesei. Biochemistry 34(3):847–856

    Article  PubMed  Google Scholar 

  • Törrönen A, Harkki A, Rouvinen J (1994) Three-dimensional structure of endo-1,4-beta-xylanase II from Trichoderma reesei: two conformational states in the active site. EMBO J 13(11):2493–2501

    PubMed  PubMed Central  Google Scholar 

  • van Gunsteren WF, Billeter SR, Eising AA, Hünenberger PH, Krüger PK, Mark AE, Scott WRP, Tironi IG (1996) Biomolecular simulation: the {GROMOS96} manual and user guide. Hochschuleverlag AG an der ETH Zürich, Zürich, Switzerland

  • Vandermarliere E, Bourgois TM, Rombouts S, Van Campenhout S, Volckaert G, Strelkov SV, Delcour JA, Rabijns A, Courtin CM (2008) Crystallographic analysis shows substrate binding at the −3 to +1 active-site subsites and at the surface of glycoside hydrolase family 11 endo-1,4-beta-xylanases. Biochem J 410(1):71–79. doi:10.1042/bj20071128

    Article  CAS  PubMed  Google Scholar 

  • Vardakou M, Dumon C, Murray JW, Christakopoulos P, Weiner DP, Juge N, Lewis RJ, Gilbert HJ, Flint JE (2008) Understanding the structural basis for substrate and inhibitor recognition in eukaryotic GH11 xylanases. J Mol Biol 375(5):1293–1305. doi:10.1016/j.jmb.2007.11.007

    Article  CAS  PubMed  Google Scholar 

  • Wan Q, Zhang Q, Hamilton-Brehm S, Weiss K, Mustyakimov M, Coates L, Langan P, Graham D, Kovalevsky A (2014) X-ray crystallographic studies of family 11 xylanase Michaelis and product complexes: implications for the catalytic mechanism. Acta Crystallogr Sect D Biol Crystallogr 70(Pt 1):11–23. doi:10.1107/s1399004713023626

    Article  CAS  Google Scholar 

  • Wong KK, Tan LU, Saddler JN (1988) Multiplicity of beta-1,4-xylanase in microorganisms: functions and applications. Microbiol Rev 52(3):305–317

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Z, Liu H, Wang C, Xu JR (2013) Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi. BMC Genomics 14:274. doi:10.1186/1471-2164-14-274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the financial support provided by Secretaría de Educación Pública-Consejo Nacional de Ciencia y Tecnología (SEP-CONACyT), México (project 2012-01-182755 to María G. Zavala-Páramo), Coordinación de la Investigación, Universidad Michoacana de San Nicolás de Hidalgo (project 2014-2015 to Horacio Cano-Camacho), Consejo Nacional de Ciencia y Tecnología, México, for scholarship number 209148 granted to Ulises Conejo-Saucedo and scholarship number 233565 granted to Maria G. Villa-Rivera, and Universidad Nacional Autónoma de México for postdoctoral fellowship program 2012-14 granted to Alicia Lara-Márquez.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María G. Zavala-Páramo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Section Editor: Marc Stadler

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Conejo-Saucedo, U., Cano-Camacho, H., Villa-Rivera, M.G. et al. Protein homology modeling, docking, and phylogenetic analyses of an endo-1,4-β-xylanase GH11 of Colletotrichum lindemuthianum . Mycol Progress 16, 577–591 (2017). https://doi.org/10.1007/s11557-017-1291-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11557-017-1291-3

Keywords

Navigation