Skip to main content
Log in

Genetic entanglement between Cercospora species associating soybean purple seed stain

  • Original Article
  • Published:
Mycological Progress Aims and scope Submit manuscript

Abstract

Soybean purple seed stain (S-PSS) is a destructive, worldwide distributed fungal disease caused by several Cercospora species. This work aims to shed light on the nature of the genealogical and genetic relationships amongst S-PSS causal agents. Fungal isolates were obtained from Argentina and Brazil, which belong to the leading countries in soybean production worldwide. DNA sequences were obtained from eight loci across the collection of isolates. Relationships were evaluated through Bayesian phylogenetic inferences, and distance and character-based network analyses and discriminant analyses. The occurrence of reticulate evolutionary events was tested with recombination tests. The high haplotype diversity (H = 1.0) was arranged in four validated haplogroups. Reticulate network topologies were evident, and 11 recombination events were validated through several tests. Five of these events occurred across species boundaries. Comparison with sequences from 70 Cercospora species indicated that at least five monophyletic groups of S-PSS-causing agents are currently present in South America. The provided evidence supports the hypothesis that interspecific genetic exchange plays a significant role in the evolutionary dynamics of Cercospora species in this region. The occurrence of interspecific recombination has implications for understanding epidemiological threats to soybean production that appear to be more serious than previously anticipated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

S-PSS:

Soybean purple seed stain

GCPSR:

Genealogical Concordance Phylogenetic Species Recognition

References

  • Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Csaki F (eds) Second international symposium on information theory. Akademiai Kiado, Budapest, pp 267–281

    Google Scholar 

  • Albu S, Schneider RW, Price PP, Doyle VP (2016) Cercospora cf. flagellaris and Cercospora cf. sigesbeckiae are associated with Cercospora leaf blight and purple seed stain on soybean in North America. Phytopathology 106:1376–1385

    Article  CAS  PubMed  Google Scholar 

  • Almeida ÁMR, Piuga FF, Marin SRR, Binneck E, Sartori F, Costamilan LM, Teixeira MR, Lopes M (2005) Pathogenicity, molecular characterization, and cercosporin content of Brazilian isolates of Cercospora kikuchii. Fitopatol Bras 30:594–602

    Article  Google Scholar 

  • Álvarez-Pérez S, de Vega C, Herrera CM (2013) Multilocus sequence analysis of nectar pseudomonads reveals high genetic diversity and contrasting recombination patterns. PLoS One 8:e75797

    Article  PubMed  PubMed Central  Google Scholar 

  • Bakhshi M, Arzanlou M, Babai-ahari A, Groenewald JZ, Braun U, Crous PW (2015) Application of the consolidated species concept to Cercospora spp. from Iran. Persoonia 34:65–86

    Article  CAS  PubMed  Google Scholar 

  • Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    Article  CAS  PubMed  Google Scholar 

  • Bolton MD, Secor GA, Rivera V, Weiland JJ, Rudolph K, Birla K, Rengifo J, Campbell LG (2012) Evaluation of the potential for sexual reproduction in field populations of Cercospora beticola from USA. Fungal Biol 116:511–521

    Article  PubMed  Google Scholar 

  • Boni MF, Posada D, Feldman MW (2007) An exact nonparametric method for inferring mosaic structure in sequence triplets. Genetics 176:1035–1047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braun U, Nakashima C, Crous PW (2013) Cercosporoid fungi (Mycosphaerellaceae) 1. species on other fungi, Pteridophyta and Gymnospermae. Int Mycol Assoc Fungus 4:265–345

    Google Scholar 

  • Braun U, Crous PW, Nakashima C (2014) Cercosporoid fungi (Mycosphaerellaceae) 2. species on monocots (Acoraceae to Xyridaceae, excluding Poaceae). Int Mycol Assoc Fungus 5:203–390

    Google Scholar 

  • Braun U, Crous PW, Nakashima C (2015) Cercosporoid fungi (Mycosphaerellaceae) 3. species on monocots (Poaceae, true grasses). Int Mycol Assoc Fungus 6:25–97

    Google Scholar 

  • Bruen TC, Philippe H, Bryant D (2006) A simple and robust statistical test for detecting the presence of recombination. Genetics 172:2665–2681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bryant D, Moulton V (2004) Neighbor-Net: an agglomerative method for the construction of phylogenetic networks. Mol Biol Evol 21:255–265

    Article  CAS  PubMed  Google Scholar 

  • Cai G, Schneider RW (2008) Population structure of Cercospora kikuchii, the causal agent of Cercospora leaf blight and purple seed stain in soybean. Phytopathology 98:823–829

    Article  CAS  PubMed  Google Scholar 

  • Campbell V, Legendre P, Lapointe FJ (2011) The performance of the Congruence Among Distance Matrices (CADM) test in phylogenetic analysis. BMC Evol Biol 11:64

    Article  PubMed  PubMed Central  Google Scholar 

  • Chupp C (1954) A monograph of the fungus genus Cercospora. Ithaca, New York, 667 pp

    Google Scholar 

  • Corlett M (1991) An annotated list of the published names in Mycosphaerella and Sphaerella. Mycological Memoir no. 18

  • Croll D, Sanders IR (2009) Recombination in Glomus intraradices, a supposed ancient asexual arbuscular mycorrhizal fungus. BMC Evol Biol 9:13

    Article  PubMed  PubMed Central  Google Scholar 

  • Crous PW, Braun U (2003) Mycosphaerella and its anamorphs: 1. Names published in Cercospora and Passalora. CBS Biodivers Ser 1:1–571

    Google Scholar 

  • Crous PW, Aptroot A, Kang J-C, Braun U, Wingfield MJ (2000) The genus Mycosphaerella and its anamorphs. Stud Mycol 45:107–121

    Google Scholar 

  • Crous PW, Groenewald JZ, Mansilla JP, Hunter GC, Wingfield MJ (2004a) Phylogenetic reassessment of Mycosphaerella spp. and their anamorphs occurring on Eucalyptus. Stud Mycol 50:195–214

    Google Scholar 

  • Crous PW, Groenewald JZ, Pongpanich K, Himaman W, Arzanlou M, Wingfield MJ (2004b) Cryptic speciation and host specificity among Mycosphaerella spp. occurring on Australian Acacia species grown as exotics in the tropics. Stud Mycol 50:457–469

    Google Scholar 

  • De Queiroz K (2007) Species concepts and species delimitation. Syst Biol 56:879–886

    Article  PubMed  Google Scholar 

  • Dettman JR, Jacobson DJ, Turner E, Pringle A, Taylor JW (2003) Reproductive isolation and phylogenetic divergence in Neurospora: comparing methods of species recognition in a model eukaryote. Evolution 57:2721–2741

    Article  PubMed  Google Scholar 

  • Douhan GW, Huryn KL, Douhan LAI (2007) Significant diversity and potential problems associated with inferring population structure within the Cenococcum geophilum species complex. Mycologia 99:812–819

    Article  CAS  PubMed  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards SV, Xi Z, Janke A, Faircloth BC, McCormack JE, Glenn TC, Zhong B, Wu S, Lemmon EM, Lemmon AR, Leaché AD, Liu L, Davis CC (2016) Implementing and testing the multispecies coalescent model: a valuable paradigm for phylogenomics. Mol Phylogenet Evol 94:447–462

    Article  PubMed  Google Scholar 

  • Ellis MB (1971) Dematiaceous hyphomycetes. Commonwealth Mycological Institute, Kew, Surrey, UK, pp 1–608

    Google Scholar 

  • Gams W, van der Aa HA, van der Plaats-Niterink AJ, Samsom RA, Stalpers JA (1987) CBS course of mycology. Centraalbureau voor Schimmelcultures, Institute of the Royal Netherlands

  • Gams W, Verkleij GJM, Crous PW (2007) CBS course of mycology, 5th edn. Centraalbureau voor Schimmelcultures, The Netherlands

    Google Scholar 

  • Gibbs MJ, Armstrong JS, Gibbs AJ (2000) Sister-scanning: a Monte Carlo procedure for assessing signals in recombinant sequences. Bioinformatics 16:573–582

    Article  CAS  PubMed  Google Scholar 

  • Giribet G, Wheeler WC (1999) On gaps. Mol Phylogenet Evol 13:132–143

    Article  CAS  PubMed  Google Scholar 

  • González AM, Turino L, Latorre Rapela MG, Lurá MC (2008) Cercospora kikuchii aislada en la provincia de Santa Fe (Argentina): variabilidad genética y producción de cercosporina in vitro. Rev Iberoam Micol 25:237–241

    Article  PubMed  Google Scholar 

  • Groenewald M, Groenewald JZ, Harrington TC, Abeln ECA, Crous PW (2006) Mating type gene analysis in apparently asexual Cercospora species is suggestive of cryptic sex. Fungal Genet Biol 43:813–825

    Article  CAS  PubMed  Google Scholar 

  • Groenewald M, Linde CC, Groenewald JZ, Crous PW (2008) Indirect evidence for sexual reproduction in Cercospora beticola populations from sugar beet. Plant Pathol 57:25–32

    CAS  Google Scholar 

  • Groenewald JZ, Nakashima C, Nishikawa J, Shin H-D, Park J-H, Jama AN, Groenewald M, Braun U, Crous PW (2013) Species concepts in Cercospora: spotting the weeds among the roses. Stud Mycol 75:115–170

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa M, Kishino H, Yano TA (1985) Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174

    Article  CAS  PubMed  Google Scholar 

  • Hudson RR, Kaplan NL (1985) Statistical properties of the number of recombination events in the history of a sample of DNA sequences. Genetics 111:147–164

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267

    Article  CAS  PubMed  Google Scholar 

  • Hyten DL, Song Q, Zhu Y, Choi I-Y, Nelson RL, Costa JM, Specht JE, Shoemaker RC, Cregan PB (2006) Impacts of genetic bottlenecks on soybean genome diversity. Proc Natl Acad Sci U S A 103:16666–16671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405

    Article  CAS  PubMed  Google Scholar 

  • Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94

    Article  PubMed  PubMed Central  Google Scholar 

  • Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism. Academic Press, New York, pp 21–132

    Chapter  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  • Latorre Rapela MG, Colombini MA, González AM, Vaira SM, Maumary R, Mattio MC, Carrera E, Lurá MC (2011) Phenotypic and genotypic variability in Cercospora kikuchii isolates from Santa Fe province, Argentina. In: Krezhova D (ed) Soybean—genetics and novel techniques for yield enhancement. InTech Open Access Publisher, Croatia, pp 97–112

    Google Scholar 

  • Le Gac M, Hood ME, Fournier E, Giraud T (2007) Phylogenetic evidence of host-specific cryptic species in the anther smut fungus. Evolution 61:15–26

    Article  PubMed  Google Scholar 

  • Lee G-A, Crawford GW, Liu L, Sasaki Y, Chen X (2011) Archaeological soybean (Glycine max) in East Asia: does size matter? PLoS One 6:e26720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lepage BA, Currah RS, Stockey RA (1994) The fossil fungi of the Princeton chert. Int J Plant Sci 155:828–836

    Article  Google Scholar 

  • Lian S, Lee J-S, Cho WK, Yu J, Kim M-K, Choi H-S, Kim K-H (2013) Phylogenetic and recombination analysis of tomato spotted wilt virus. PLoS One 8:e63380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Wang M, Damm U, Crous PW, Cai L (2016) Species boundaries in plant pathogenic fungi: a Colletotrichum case study. BMC Evol Biol 16:81

    Article  PubMed  PubMed Central  Google Scholar 

  • Lurá MC, Latorre Rapela MG, Vaccari MC, Maumary R, Soldano A, Mattio M, González AM (2011) Genetic diversity of Cercospora kikuchii isolates from soybean cultured in Argentina as revealed by molecular markers and cercosporin production. Mycopathologia 171:361–371

    Article  PubMed  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    CAS  PubMed  Google Scholar 

  • Martin D, Rybicki E (2000) RDP: detection of recombination amongst aligned sequences. Bioinformatics 16:562–563

    Article  CAS  PubMed  Google Scholar 

  • Martin DP, Murrell B, Golden M, Khoosal A, Muhire B (2015) RDP4: detection and analysis of recombination patterns in virus genomes. Virus Evol 1:1–5

    Article  Google Scholar 

  • Maynard Smith J (1992) Analyzing the mosaic structure of genes. J Mol Evol 34:126–129

    Google Scholar 

  • McDonald BA, Linde C (2002) Pathogen population genetics, evolutionary potential, and durable resistance. Annu Rev Phytopathol 40:349–379

    Article  CAS  PubMed  Google Scholar 

  • McVean GAT, Myers SR, Hunt S, Deloukas P, Bentley DR, Donnelly P (2004) The fine-scale structure of recombination rate variation in the human genome. Science 304:581–584

    Article  CAS  PubMed  Google Scholar 

  • Morrison DA (2011) Introduction to phylogenetic networks. Available online at: http://www.rjr-productions.org/Networks/index.html

  • Nylander JAA (2004) MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University, Uppsala

    Google Scholar 

  • O’Donnell K, Cigelnik E, Nirenberg HI (1998) Molecular systematics and phylogeography of the Gibberella fujikuroi species complex. Mycologia 90:465–493

    Article  Google Scholar 

  • Padidam M, Sawyer S, Fauquet CM (1999) Possible emergence of new geminiviruses by frequent recombination. Virology 265:218–225

    Article  CAS  PubMed  Google Scholar 

  • Peterson SW (2008) Phylogenetic analysis of Aspergillus species using DNA sequences from four loci. Mycologia 100:205–226

    Article  CAS  PubMed  Google Scholar 

  • Posada D, Crandall KA (2001) Evaluation of methods for detecting recombination from DNA sequences: computer simulations. Proc Natl Acad Sci U S A 98:13757–13762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quaedvlieg W, Binder M, Groenewald JZ, Summerell BA, Carnegie AJ, Burgess TI, Crous PW (2014) Introducing the consolidated species concept to resolve species in the Teratosphaeriaceae. Persoonia 33:1–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rambaut A (2006–2014). FigTree v1.4.2. Available online at: http://tree.bio.ed.ac.uk/software/figtree/

  • Rambaut A, Suchard MA, Xie D, Drummond AJ (2014) Tracer v1.6. Available online at: http://beast.bio.ed.ac.uk/Tracer

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  • Salminen MO, Carr JK, Burke DS, McCutchan FE (1995) Identification of breakpoints in intergenotypic recombinants of HIV type 1 by bootscannning. AIDS Res Hum Retrovir 11:1423–1425

    Article  CAS  PubMed  Google Scholar 

  • Siboe GM, Murray J, Kirk PM (2000) Genetic similarity among Cercospora apii-group species and their detection in host plant tissue by PCR/RFLP analyses of the rDNA internal transcribed spacer (ITS). J Gen Appl Microbiol 46:69–78

    Article  CAS  PubMed  Google Scholar 

  • Soares APG, Guillin EA, Borges LL, da Silva ACT, de Almeida ÁMR, Grijalba PE, Gottlieb AM, Bluhm BH, de Oliveira LO (2015) More Cercospora species infect soybeans across the Americas than meets the eye. PLoS One 10:e0133495

    Article  PubMed  PubMed Central  Google Scholar 

  • Starkey DE, Ward TJ, Aoki T, Gale LR, Kistler HC, Geiser DM, Suga H, Toth B, Varga J, O’Donnell K (2007) Global molecular surveillance reveals novel Fusarium head blight species and trichothecene toxin diversity. Fungal Genet Biol 44:1191–1204

    Article  CAS  PubMed  Google Scholar 

  • Stewart EL, Liu Z, Crous PW, Szabo LJ (1999) Phylogenetic relationships among some cercosporoid anamorphs of Mycosphaerella based on rDNA sequence analysis. Mycol Res 103:1491–1499

    Article  CAS  Google Scholar 

  • Stewart JE, Timmer LW, Lawrence CB, Pryor BM, Peever TL (2014) Discord between morphological and phylogenetic species boundaries: incomplete lineage sorting and recombination results in fuzzy species boundaries in an asexual fungal pathogen. BMC Evol Biol 14:38

    Article  PubMed  PubMed Central  Google Scholar 

  • Tamura K (1992) Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G + C-content biases. Mol Biol Evol 9:678–687

    CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor JW, Jacobson DJ, Kroken S, Kasuga T, Geiser DM, Hibbett DS, Fisher MC (2000) Phylogenetic species recognition and species concepts in fungi. Fungal Genet Biol 31:21–32

    Article  CAS  PubMed  Google Scholar 

  • To-Anun C, Hidayat I, Meeboon J (2011) Genus Cercospora in Thailand: taxonomy and phylogeny (with a dichotomous key to species). Plant Pathol Quar 1:11–87

    Google Scholar 

  • Wen D, Yu Y, Nakhleh L (2016) Bayesian inference of reticulate phylogenies under the multispecies network coalescent. PLoS Genet 12:e1006006

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to express our sincere gratitude to the farmers and field technicians who provided assistance during field trips and sampling. We also wish to express our gratitude to B. Ferrari, M. Quiroga, E. Pozzo, D. Girotti, N. García Dutriez and M. Franco from “Don Mario Semillas” for supplying infected materials from different locations in Argentina. This research was financially supported by “Programa de Proyectos Conjuntos de Investigación SPU-CAPES MERCOSUR” (2011-PPC015), “Instituto Nacional de Tecnología Agropecuaria (INTA, Argentina)”, the Minas Gerais State Foundation of Research Aid—FAPEMIG (PPM 00561-15), the National Council of Scientific and Technological Development—CNPq (478752/2013-0 and 305827/2015-4) and the CAPES Foundation—Brazilian Ministry of Education (PPCP-Mercosul 015/2011 and AUX-PE PNPD 2927/2010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra M. Gottlieb.

Additional information

Section Editor: Hans-Josef Schroers

Electronic supplementary material

Below are the links to the electronic supplementary material.

Supplementary Table S1

Materials used in this study, including geographic origin of isolates and GenBank accession numbers; the tentative identification of isolates follows Soares et al. (2015) where possible (DOC 131 kb)

Supplementary Table S2

Additional materials used in this study, including numbers of isolates, host names, geographic origin and GenBank accession numbers. Species names are those proposed in Groenewald et al. (2013). The numbers of ex-type isolates are indicated (DOC 250 kb)

Supplementary Table S3

Results of CADM tests performed pairwise amongst single loci matrices from dataset 1. Kendall test values (below the diagonal) and Mantel probabilities (above the diagonal) are shown. All probabilities are based upon 999 permutations (DOC 37 kb)

Supplementary Table S4

Results of CADM tests performed pairwise amongst single loci matrices from dataset 2. Kendall test values (below the diagonal) and Mantel probabilities (above the diagonal) are shown. All probabilities are based upon 999 permutations (DOC 28.5 kb)

Fig. S1

Median-joining network derived from dataset 1, excluding C. sojina (484 sites; 66 terminals). The colours in terminals indicate species identification: C. kikuchii and C. aff. kikuchii (blue); C. cf. flagellaris (red); C. cf. sigesbeckiae (purple); Cercospora sp. Q (green); C. alchemillicola (pink); Cercospora sp. H (orange); Cercospora sp. (black). The black squares represent putative or not sampled haplotypes (GIF 22.2 kb)

High resolution image (TIF 596 kb)

Fig. S2

Graphical haplotypes and haplogroups defined for dataset 1. The top line shows the gene order and the approximate size of each gene locus, as follows: act (bases 1–151), cal (152–395), cfp (396–1265), cyt-b (1266–1918), ef (1919–2154) and tub1/2 (2155–3351). Each grey block represents a unique haplotype; variable sites are depicted by vertical lines. The coloured small dots indicate species identification: C. kikuchii and C. aff. kikuchii (blue); C. cf. flagellaris (red); C. cf. sigesbeckiae (purple); Cercospora sp. Q (green); C. alchemillicola (pink); Cercospora sp. H (orange); Cercospora sp. (black). The black arrows indicate interlocus recombinants and the pink arrow shows a putative intralocus recombinant. Haplogroups (H) are delimited on the right, with the equivalent DAPC group assignment shown in parentheses (G) (GIF 148 kb)

High resolution image (TIF 1336 kb)

Fig. S3

DAPC analyses of dataset 1 (excluding C. sojina; 3351 sites; 66 terminals). a Scatter plot depicting relative intragroup and among-group genetic distances. The first three axes explain 74%, 15.7% and 10.3% of the variation, respectively. The colours correspond to those used to delimit haplogroups. Individual isolates cannot be distinguished within each group and inertia ellipses are not apparent in the scatter plot due to the scale defined by the intragroup/intergroup variation rate. b Group assignment. The red blocks indicate full assignment probability (p = 1.0). Isolates are coloured according to their species identification: C. kikuchii and C. aff. kikuchii (blue); C. cf. flagellaris (red); C. cf. sigesbeckiae (purple); Cercospora sp. Q (green); C. alchemillicola (pink); Cercospora sp. H (orange); Cercospora sp. (black) (GIF 50.3 kb)

High resolution image (TIF 336 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guillin, E.A., de Oliveira, L.O., Grijalba, P.E. et al. Genetic entanglement between Cercospora species associating soybean purple seed stain. Mycol Progress 16, 593–603 (2017). https://doi.org/10.1007/s11557-017-1289-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11557-017-1289-x

Keywords

Navigation