Skip to main content
Log in

A large-scale container dataset and a baseline method for container hole localization

  • Original Research Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

Automatic container handling plays an important role in improving the efficiency of the container terminal, promoting the globalization of container trade, and ensuring worker safety. Utilizing vision-based methods to assist container handling has recently drawn attention. However, most existing keyhole detection/localization methods still suffer from coarse keyhole boundaries. To solve this problem, we propose a real-time container hole localization algorithm based on a modified salient object segmentation network. Note that there exists no public container dataset for researchers to fairly compare their approaches, which has hindered the advances of related algorithms in this domain. Therefore, we propose the first large-scale container dataset in this work, containing 1700 container images and 4810 container hole images, for benchmarking container hole location and detection. Through extensive quantitative evaluation and computational complexity analysis, we show our method can simultaneously achieve superior results on precision and real-time performance. Especially, the detection and location precision is 100% and 99.3%, surpassing the state-of-the-art-work by 2% and 62% respectively. Further, our proposed method only consumes 70 ms (on GPU) or 1.27s (on CPU) per image. We hope the baseline approach, the first released dataset will help benchmark future work and follow-up research on automatic container handling. The dataset is available at https://github.com/qkicen/A-large-scale-container-dataset-and-a-baseline-method-for-container-hole-localization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cullinane, K.P.B., Wang, T.-F.: The efficiency of European container ports: a cross-sectional data envelopment analysis. Int. J. Logist. Res. Appl. 9(1), 19–31 (2006)

    Article  Google Scholar 

  2. Saxon, S., Stone, M.: Container shipping: the next 50 years. Transp. Logist. Travel (2017). https://www.hktdc.com/resources/New_Corporate_Site/almc2018/1543288787953_Steve-Saxon.pdf

  3. Cheng, T., Teizer, J.: Modeling tower crane operator visibility to minimize the risk of limited situational awareness. J. Comput. Civ. Eng. 28(3), 04014004 (2014)

    Article  Google Scholar 

  4. Lennane, A.: Measuring port performance. Loadstar (2015). https://theloadstar.com/measuring-port-performance/

  5. Budiyanto, M.A., Fernanda, H.: Risk assessment of work accident in container terminals using the fault tree analysis method. J. Mar. Sci. Eng. 8(6), 466 (2020)

    Article  Google Scholar 

  6. Voulodimos, A., Doulamis, N., Doulamis, A., Protopapadakis, E.: Deep learning for computer vision: a brief review. Comput. Intell. Neurosci. 2018, 7068349:1–7068349:13 (2018)

    Google Scholar 

  7. Shen, Y., Mi, W., Zhang, Z.: A positioning lockholes of container corner castings method based on image recognition. Pol. Marit. Res. 24(S3(95)), 95–101 (2017)

    Article  Google Scholar 

  8. Diao, Y., Cheng, W., Run, D., Wang, Y., Zhang, J.: Vision-based detection of container lock holes using a modified local sliding window method. EURASIP J. Image Video Process. 2019(1), 1–8 (2019)

    Article  Google Scholar 

  9. Lee, J.: Deep learning-assisted real-time container corner casting recognition. Int. J. Distrib. Sens. Netw. 15(1), 1550147718824462 (2019)

    Google Scholar 

  10. Li, Y., Fang, J., Fang, L.: Container keyhole positioning based on deep neural network. Int. J. Wirel. Mob. Comput. 18(1), 40–50 (2020)

    Article  Google Scholar 

  11. Bhagya, C., Shyna, A.: An overview of deep learning based object detection techniques. In: 2019 1st International Conference on Innovations in Information and Communication Technology (ICIICT). IEEE, pp. 1–6 (2019)

  12. Waghule, D.R., Ochawar, R.S.: Overview on edge detection methods. In: 2014 International Conference on Electronic Systems, Signal Processing and Computing Technologies. IEEE, pp. 151–155 (2014)

  13. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. arXiv:1506.01497 (2015)

  14. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1904–1916 (2015)

    Article  Google Scholar 

  15. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

  16. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

  17. Wang, C.-Y., Bochkovskiy, A., Liao, H.-Y.M.: Scaled-yolov4: scaling cross stage partial network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13029–13038 (2021)

  18. Tian, Z., Shen, C., Chen, H., He, T.: FCOS: fully convolutional one-stage object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9627–9636 (2019)

  19. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., Berg, A. C.: SSD: single shot multibox detector. In: European Conference on Computer Vision. Springer, pp. 21–37 (2016)

  20. Borji, A., Cheng, M.-M., Hou, Q., Jiang, H., Li, J.: Salient object detection: a survey. Comput. Vis. Media 5(2), 117–150 (2019)

    Article  Google Scholar 

  21. Guan, W., Wang, T., Qi, J., Zhang, L., Huchuan, L.: Edge-aware convolution neural network based salient object detection. IEEE Signal Process. Lett. 26(1), 114–118 (2018)

    Article  Google Scholar 

  22. Liu, J., Hou, Q., Cheng, M.-M., Feng, J., Jiang, J.: A simple pooling-based design for real-time salient object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16–20, 2019. Computer Vision Foundation/IEEE, pp. 3917–3926 (2019)

  23. Qin, X., Zhang, Z. Vi., Huang, C., Gao, C., Dehghan, M., Jägersand, M.: Basnet: boundary-aware salient object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16–20, 2019. Computer Vision Foundation/IEEE, pp. 7479–7489 (2019)

  24. Zhao, J., Liu, J., Fan, D.-P., Cao, Y., Yang, J., Cheng, M.-M.: Egnet: edge guidance network for salient object detection. In: 2019 IEEE/CVF International Conference on Computer Vision, ICCV 2019, Seoul, Korea (South), October 27–November 2, 2019. IEEE, pp. 8778–8787 (2019)

  25. Wei, L., Lee, E.-J.: Real-time container shape and range recognition for implementation of container auto-landing system. J. Korea Multim. Soc. 12(6), 794–803 (2009)

    Google Scholar 

  26. Yoon, H.-J., Hwang, Y.-C., Cha, E-Y.: Real-time container position estimation method using stereo vision for container auto-landing system. In: ICCAS 2010. IEEE, pp. 872–876 (2010)

  27. Duda, R.O., Hart, P.E.: Use of the Hough transformation to detect lines and curves in pictures. Commun. ACM 15(1), 11–15 (1972)

    Article  Google Scholar 

  28. Mi, C., Zhang, Z.-W., Huang, Y.-F., Shen, Y.: A fast automated vision system for container corner casting recognition. J. Mar. Sci. Technol. 24(1), 54–60 (2016)

    Google Scholar 

  29. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05). IEEE, vol. 1, pp. 886–893 (2005)

  30. Hsu, C.-W., Lin, C.-J.: A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Netw. 13(2), 415–425 (2002)

    Article  Google Scholar 

  31. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  32. Canny, J.F.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)

    Article  Google Scholar 

  33. Gander, W., Golub, G.H., Strebel, R.: Least-squares fitting of circles and ellipses. BIT Numer. Math. 34(4), 558–578 (1994)

    Article  MathSciNet  Google Scholar 

  34. Hui, T., Xu, Y.L., Jarhinbek, R.: Detail texture detection based on yolov4-tiny combined with attention mechanism and bicubic interpolation. IET Image Process. (2021)

  35. Li, H., Li, C., Li, G., Chen, L.: A real-time table grape detection method based on improved yolov4-tiny network in complex background. Biosyst. Eng. 212(2021), 347–359 (2021)

    Article  Google Scholar 

  36. Radosavovic, I., Kosaraju, R.P., Girshick, R., He, K., Dollár, P.: Designing network design spaces. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10428–10436 (2020)

  37. Zhang, P., Wang, D., Lu, H., Wang, H., Ruan, X.: Amulet: aggregating multi-level convolutional features for salient object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 202–211 (2017)

  38. Farin, Gerald: Algorithms for rational Bézier curves. Comput. Aided Des. 15(2), 73–77 (1983)

    Article  Google Scholar 

  39. Australia, S.: Freight containers: part 3: corner fittings. Standards (1993)

  40. Micikevicius, P., Narang, S., Alben, J., Diamos, G., Elsen, E., Garcia, D., Ginsburg, B., Houston, M., Kuchaiev, O., Venkatesh, G., et al.: Mixed precision training. In: International Conference on Learning Representations (2018)

Download references

Acknowledgements

We thank Puxin Container Terminal, Sichuan Province, China, for providing practical scenario support. This project has received funding from the Sichuan Science and Technology Program (no. 2019YFG0300), and Open Research Project of Technology and Equipment of Rail Transit Operation and Maintenance Key Laboratory of Sichuan Province (no. 2019YW001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenming Cheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diao, Y., Tang, X., Wang, H. et al. A large-scale container dataset and a baseline method for container hole localization. J Real-Time Image Proc 19, 577–589 (2022). https://doi.org/10.1007/s11554-022-01199-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-022-01199-y

Keywords

Navigation