Skip to main content

Advertisement

Log in

Automated image quality appraisal through partial least squares discriminant analysis

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Automatic retinal fundus image quality analysis is one of the most essential preliminary stages in automatic computer-aided retinal disease diagnosis system, which allows good-quality fundus images for accurate disease prediction through localization and segmentation of retinal regions. This paper presents new feature extraction methods using full-reference and no-reference image quality metrics for image quality classification.

Methods

Basic image features, reference and no-reference features are extracted from the fundus image and applied through different classification techniques to determine the image quality for further diagnosis. In this paper, human-made categorization including good and non-good-quality fundus image classification is constructed by considering major features of retinal fundus images are illumination, clarity, image intensity, contrast and region visibility. The proposed system presented fundus image quality classification by automatic extraction of features from fundus images through image processing techniques and automatic classification of image quality through different classification algorithm.

Results

This system was thoroughly investigated on 2674 retinal fundus images from publically available datasets, namely MESSIDOR, Drishti-GS1, DRIVE, HRF, DRIONS-DB, DIARETDB0, DIARETDB1, IDRiD, INSPIRE-AVR, CHASE-DB1, ONHSD, DRIMDB and e-ophtha-EX with better performance results in terms of sensitivity, accuracy, precision and F1 score of 99.36%, 96.79%, 96.29% and 97.79%, respectively.

Conclusion

The proposed system results were compared to the existing state-of-the-art approaches and outperform existing methods for image quality assessment representing the efficiency and robustness of our system is most suitable for automatic image analysis during retinal disease diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shen Z, Fu H, Shen J, Shao L (2021) Modeling and enhancing low-quality retinal fundus images. IEEE Trans Med Imag 40:996–1006. https://doi.org/10.1109/TMI.2020.3043495

    Article  Google Scholar 

  2. Bhatkalkar B, Joshi A, Prabhu S, Bhandary S (2020) Automated fundus image quality assessment and segmentation of optic disc using convolutional neural networks. Int J Electric Comput Eng 10:816–827

    Google Scholar 

  3. Dai P, Sheng H, Zhang J, Li L, Wu J, Fan M (2016) Retinal fundus image enhancement using the normalized convolution and noise removing. Int J Biomed Imaging. https://doi.org/10.1155/2016/5075612

    Article  PubMed  PubMed Central  Google Scholar 

  4. Jiménez-García J, Romero-Oraá R, García M, López-Gálvez MI, Hornero R (2019) Combination of global features for the automatic quality assessment of retinal images. Entropy 21:1–19. https://doi.org/10.3390/e21030311

    Article  Google Scholar 

  5. Muddamsetty SM, Moeslund TB (2020) Multi-level quality assessment of retinal fundus images using deep convolution neural networks. In: 16th international joint conference on computer vision theory and applications (VISAPP-2021). SCITEPRESS Digital Library

  6. Sevik U, Köse C, Berber T, Erdöl H (2014) Identification of suitable fundus images using automated quality assessment methods. J Biomed Opt 19:046006. https://doi.org/10.1117/1.jbo.19.4.046006

    Article  PubMed  Google Scholar 

  7. Paulus J, Meier J, Bock R, Hornegger J, Michelson G (2010) Automated quality assessment of retinal fundus photos. Int J Comput Assist Radiol Surg 5:557–564. https://doi.org/10.1007/s11548-010-0479-7

    Article  PubMed  Google Scholar 

  8. Pires Dias JM, Oliveira CM, Da Silva CLA (2014) Retinal image quality assessment using generic image quality indicators. Inform Fusion 19:73–90. https://doi.org/10.1016/j.inffus.2012.08.001

    Article  Google Scholar 

  9. Shao F, Yang Y, Jiang Q, Jiang G, Ho Y (2017) Automated quality assessment of fundus images via analysis of illumination, naturalness and structure. IEEE Access 6:806–817. https://doi.org/10.1109/ACCESS.2017.2776126

    Article  Google Scholar 

  10. Shen Y, Sheng B, Fang R, Li H, Dai L, Stolte S, Qin J, Jia W, Shen D (2020) Domain-invariant interpretable fundus image quality assessment. Med Image Anal 61:101654. https://doi.org/10.1016/j.media.2020.101654

    Article  PubMed  Google Scholar 

  11. Raj A, Shah NA, Tiwari AK, Martini MG (2020) Multivariate regression-based convolutional neural network model for fundus image quality assessment. IEEE Access 8:57810–57821. https://doi.org/10.1109/ACCESS.2020.2982588

    Article  Google Scholar 

  12. Liu H, Zhang N, Jin S, Xu D, Gao W (2021) Small sample color fundus image quality assessment based on gcforest. Multimed Tools Appl 80:17441–17459. https://doi.org/10.1007/s11042-020-09362-y

    Article  Google Scholar 

  13. Carmona Suárez EJ, Rincón Zamorano M, García-Feijoo J, Martínez-de-la-Casa JM, Servet MBMHM (2008) DRIONS-DB: digital retinal images for optic nerve segmentation database. http://www.ia.uned.es/~ejcarmona/DRIONS-DB.html

  14. Sivaswamy J, Krishnadas SR, Joshi GD, Jain M, Ujjwal STA (2014) DRISHTI-GS: retinal image dataset for optic nerve head (ONH) segmentation IIIT. Hyderabad, India, pp 53–56

    Google Scholar 

  15. Decencière E, Zhang X, Cazuguel G, Lay B, Cochener B, Trone C, Gain P, Ordonez R, Massin P, Erginay A, Charton B, Klein J (2014) Feedback on a publicly distributed image database: the messidor database. Image Anal Stereol 33:231–234. https://doi.org/10.5566/ias.1155

    Article  Google Scholar 

  16. Budai A, Bock R, Maier A, Hornegger JGM (2013) High-resolution fundus (HRF) image database. https://www5.cs.fau.de/research/data/fundus-images/

  17. DRIVE: Digital retinal images for vessel extraction. https://drive.grand-challenge.org/

  18. Niemeijer M, Xu X, Dumitrescu AV, Gupta P, van Ginneken B, Folk JCAM (2011) Automated measurement of the arteriolar-to-venular width ratio in digital color fundus photographs. IEEE Trans Med Imaging 30:1941–1950. https://doi.org/10.1109/TMI.2011.2159619

    Article  PubMed  Google Scholar 

  19. Owen CG, Rudnicka AR, Mullen R, Barman SA, Monekosso D, Whincup PH, Ng J, Paterson C (2009) Retinal image analysis. https://blogs.kingston.ac.uk/retinal/chasedb1/

  20. Kauppi T, Kalesnykiene V, Kamarainen J, Lensu L, Sorri I, Uusitalo H, Kalviainen H, Pietil J (2006) DIARETDB0 : evaluation database and methodology for diabetic retinopathy algorithms, pp 1–17

  21. Kauppi T, Kalesnykiene V, Kamarainen J, Lensu L, Sorri I, Uusitalo H, Kalviainen H, Pietil J (2007) The DIARETDB1 diabetic retinopathy database and evaluation protocol. BMVC 2007 - Proceedings of the British machine vision conference 2007, pp 1–18 https://doi.org/10.5244/C.21.15

  22. Lowell J, Hunter A, Steel D, Basu A, Ryder R, Fletcher E, Kennedy L (2004) Optic nerve head segmentation. IEEE Trans Med Imaging 23:256–264. https://doi.org/10.1109/TMI.2003.823261

    Article  PubMed  Google Scholar 

  23. Decencière E, Cazuguel G, Zhang X, Thibault G, Klein JC, Meyer F, Marcotegui B, Quellec G, Lamard M, Danno R, Elie D, Massin P, Viktor Z, Erginay A, Laÿ B, Chabouis A (2013) TeleOphta: machine learning and image processing methods for teleophthalmology. Irbm 34:196–203. https://doi.org/10.1016/j.irbm.2013.01.010

    Article  Google Scholar 

  24. Porwal P, Pachade S, Kamble R, Kokare M, Deshmukh G, Sahasrabuddhe VFM (2018) Indian diabetic retinopathy image dataset (IDRiD). In: IEEE Dataport. https://ieee-dataport.org/open-access/indian-diabetic-retinopathy-image-dataset-idrid

  25. Venkatanath N, Praneeth D, Maruthi Chandrasekhar B, Channappayya SSM (2015) Blind image quality evaluation using perception based features. In: In proceedings of the 21st National conference on communications (NCC). Piscataway, NJ, IEEE, pp 1–6

  26. Mittal A, Soundararajan R, Bovik AC (2013) Making a “completely blind” image quality analyzer. IEEE Signal Process Lett 20:209–212. https://doi.org/10.1109/LSP.2012.2227726

    Article  Google Scholar 

  27. Mittal A, Anush KM, Alan CB (2011) Blind/referenceless image spatial quality evaluator. In: 2011 Conference record of the forty fifth asilomar conference on signals, systems and computers (ASILOMAR). IEEE, Pacific Grove, CA, USA, pp 723–727

  28. Dos Santos JCM, Carrijo GA, de Fátima dos Santos Cardoso C, Ferreira JC, Sousa PM, Patrocínio AC (2020) Fundus image quality enhancement for blood vessel detection via a neural network using CLAHE and Wiener filter. Res Biomed Eng 36:107–119. https://doi.org/10.1007/s42600-020-00046-y

    Article  Google Scholar 

  29. Fleming AD, Philip S, Goatman KA, Olson JA, Sharp PF (2006) Automated assessment of diabetic retinal image quality based on clarity and field definition. Invest Ophthalmol Vis Sci 47(3):1120–1125. https://doi.org/10.1167/iovs.05-1155

    Article  PubMed  Google Scholar 

  30. Saha SK, Fernando B, Cuadros J, Xiao D, Kanagasingam Y (2018) Automated quality assessment of colour fundus images for diabetic retinopathy screening in telemedicine. J Digital Imag 31:869–878. https://doi.org/10.1007/s10278-018-0084-9

    Article  Google Scholar 

  31. Wang Z, Simoncelli E, Bovik AC (2003) Multi-scale structural similarity for image quality assessment. N Y 2:9–13. https://doi.org/10.1109/ACSSC.2003.1292216

    Article  Google Scholar 

  32. Mittal A, Moorthy AK, Bovik AC (2012) No-reference image quality assessment in the spatial domain. IEEE Trans Image Process 21:4695–4708. https://doi.org/10.1109/TIP.2012.2214050

    Article  PubMed  Google Scholar 

  33. Jacob SG, Ramani G (2011) Discovery of knowledge patterns in clinical data through data mining algorithms: multi-class categorization of breast tissue data. Int J Comput Appl 32:46–53

    Google Scholar 

  34. Ramani RG, Sivagami G (2019) Identification of bio-markers for breast cancer detection through data mining methods. Int J Recent Technol Eng 8:763–769

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Jeslin Shanthamalar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Informed consent

This work does not involve studies with human participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramani, R.G., Shanthamalar, J.J. Automated image quality appraisal through partial least squares discriminant analysis. Int J CARS 17, 1367–1377 (2022). https://doi.org/10.1007/s11548-022-02668-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-022-02668-2

Keywords

Navigation