Skip to main content

Advertisement

Log in

Local texture descriptors for the assessment of differences in diffusion magnetic resonance imaging of the brain

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Descriptors extracted from magnetic resonance imaging (MRI) of the brain can be employed to locate and characterize a wide range of pathologies. Scalar measures are typically derived within a single-voxel unit, but neighborhood-based texture measures can also be applied. In this work, we propose a new set of descriptors to compute local texture characteristics from scalar measures of diffusion tensor imaging (DTI), such as mean and radial diffusivity, and fractional anisotropy.

Methods

We employ weighted rotational invariant local operators, namely standard deviation, inter-quartile range, coefficient of variation, quartile coefficient of variation and skewness. Sensitivity and specificity of those texture descriptors were analyzed with tract-based spatial statistics of the white matter on a diffusion MRI group study of elderly healthy controls, patients with mild cognitive impairment (MCI), and mild or moderate Alzheimer’s disease (AD). In addition, robustness against noise has been assessed with a realistic diffusion-weighted imaging phantom and the contamination of the local neighborhood with gray matter has been measured.

Results

The new texture operators showed an increased ability for finding formerly undetected differences between groups compared to conventional DTI methods. In particular, the coefficient of variation, quartile coefficient of variation, standard deviation and inter-quartile range of the mean and radial diffusivity detected significant differences even between previously not significantly discernible groups, such as MCI versus moderate AD and mild versus moderate AD. The analysis provided evidence of low contamination of the local neighborhood with gray matter and high robustness against noise.

Conclusions

The local operators applied here enhance the identification and localization of areas of the brain where cognitive impairment takes place and thus indicate them as promising extensions in diffusion MRI group studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ashburner J, Friston KJ (2000) Voxel-based morphometry—the methods. Neuroimage 11(6):805–821

    Article  CAS  PubMed  Google Scholar 

  2. Basser PJ, Mattiello J, LeBihan D (1994) Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson Ser B 103(3):247–254

    Article  CAS  Google Scholar 

  3. Basser PJ, Pierpaoli C (1996) Microstructural and physiological features of tissues elucidated by quantitative-diffusion tensor MRI. J Magn Reson Ser B 111:209–219

    Article  CAS  Google Scholar 

  4. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 57(1):289–300

    Google Scholar 

  5. Benn DI (1994) Fabric shape and the interpretation of sedimentary fabric data. J Sediment Res 64(4):910–915

    Google Scholar 

  6. Budde MD, Xie M, Cross AH, Song SK (2009) Axial diffusivity is the primary correlate of axonal injury in the experimental autoimmune encephalomyelitis spinal cord: a quantitative pixelwise analysis. J Neurosci 29(9):2805–2813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chao Wang JJ, Tc Wai YY, Hsu Y (2006) Novel diffusion anisotropy indices: an evaluation. J Magn Reson Imaging 24(1):211–217

    Article  PubMed  Google Scholar 

  8. Ennis DB, Kindlmann G (2006) Orthogonal tensor invariants and the analysis of diffusion tensor magnetic resonance images. Magn Reson Med 55(1):136–146

    Article  PubMed  Google Scholar 

  9. Frank LR (2002) Characterization of anisotropy in high angular resolution diffusion-weighted MRI. Magn Reson Med 47(6):1083–1099

    Article  PubMed  Google Scholar 

  10. Gong G (2013) Local diffusion homogeneity (LDH): an inter-voxel diffusion MRI metric for assessing inter-subject white matter variability. PLoS ONE 8(6):1–11

    Google Scholar 

  11. Grabner G, Janke AL, Budge MM, Smith D, Pruessner J, Collins DL(2006) Symmetric atlasing and model based segmentation: an application to the hippocampus in older adults. In: Medical image computing and computer-assisted intervention—MICCAI 2006. Springer, pp 58–66

  12. Horsfield MA, Jones DK (2002) Applications of diffusion-weighted and diffusion tensor MRI to white matter diseases—a review. NMR Biomed 15(7–8):570–577

    Article  PubMed  Google Scholar 

  13. Jenkinson M, Beckmann C, Behrens T, Woolrich M, Smith S (2012) FSL. Neuroimage 62(2):782–790

    Article  PubMed  Google Scholar 

  14. Jones DK, Knösche TR, Turner R (2013) White matter integrity, fiber count, and other fallacies: the do’s and don’ts of diffusion MRI. Neuroimage 73:239–254

    Article  PubMed  Google Scholar 

  15. Kingsley PB, Monahan WG (2005) Contrast-to-noise ratios of diffusion anisotropy indices. Magn Reson Med 53(4):911–918

    Article  PubMed  Google Scholar 

  16. Kochunov P, Thompson P, Lancaster J, Bartzokis G, Smith S, Coyle T, Royall D, Laird A, Fox P (2007) Relationship between white matter fractional anisotropy and other indices of cerebral health in normal aging: Tract-based spatial statistics study of aging. Neuroimage 35(2):478–487

    Article  CAS  PubMed  Google Scholar 

  17. Kong XZ (2014) Association between in-scanner head motion with cerebral white matter microstructure: a multiband diffusion-weighted MRI study. Peer J 2:e366

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kubicki M, McCarley R, Westin CF, Park HJ, Maier S, Kikinis R, Jolesz FA, Shenton ME (2007) A review of diffusion tensor imaging studies in schizophrenia. J Psychiatr Res 41(1):15–30

    Article  PubMed  Google Scholar 

  19. Lerner A, Mogensen MA, Kim PE, Shiroishi MS, Hwang DH, Law M (2014) Clinical applications of diffusion tensor imaging. World Neurosurg 82(1):96–109

    Article  PubMed  Google Scholar 

  20. de Luis-García R, Cabús-Piñol G, Imaz-Roncero C, Argibay-Quiñones D, Barrio-Arranz G, Aja-Fernández S, Alberola López C (2015) Attention deficit/hyperactivity disorder and medication with stimulants in young children: a DTI study. Prog Neuro-Psychopharmacol Biol Psychiatry 57:176–184

    Article  Google Scholar 

  21. Nichols TE, Holmes AP (2002) Nonparametric permutation tests for functional neuroimaging: a primer with examples. Human Brain Mapp 15(1):1–25

    Article  Google Scholar 

  22. O’Donnell LJ, Westin CF (2011) An introduction to diffusion tensor image analysis. Neurosurg Clin N Am 22(2):185–196

    Article  PubMed  PubMed Central  Google Scholar 

  23. Oishi K, Faria A, Jiang H, Li X, Akhter K, Zhang J, Hsu JT, Miller MI, van Zijl PC, Albert M, Lyketsos CG, Woods R, Toga AW, Pike GB, Rosa-Neto P, Evans A, Mazziotta J, Mori S (2009) Atlas-based whole brain white matter analysis using large deformation diffeomorphic metric mapping: application to normal elderly and Alzheimer’s disease participants. Neuroimage 46(2):486–499

    Article  PubMed  PubMed Central  Google Scholar 

  24. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66

    Article  Google Scholar 

  25. Özarslan E, Vemuri BC, Mareci TH (2005) Generalized scalar measures for diffusion mri using trace, variance, and entropy. Magn Reson Med 53(4):866–876

    Article  PubMed  Google Scholar 

  26. Pierpaoli C, Basser PJ (1996) Toward a quantitative assessment of diffusion anisotropy. Magn Reson Medic 36(6):893–906

    Article  CAS  Google Scholar 

  27. Rimoldini L (2014) Weighted skewness and kurtosis unbiased by sample size and Gaussian uncertainties. Astron Comput 5:1–8

    Article  Google Scholar 

  28. Salvador R, Peña A, Menon DK, Carpenter TA, Pickard JD, Bullmore ET (2005) Formal characterization and extension of the linearized diffusion tensor model. Human Brain Mapp 24(2):144–155

    Article  Google Scholar 

  29. Sexton CE, Kalu UG, Filippini N, Mackay CE, Ebmeier KP (2011) A meta-analysis of diffusion tensor imaging in mild cognitive impairment and Alzheimer’s disease. Neurobiol Aging 32(12):2322.e5–2322.e18

    Article  Google Scholar 

  30. Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, Watkins KE, Ciccarelli O, Cader MZ, Matthews PM, Behrens TEJ (2006) Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31(4):1487–1505

    Article  PubMed  Google Scholar 

  31. Smith SM, Nichols TE (2009) Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. Neuroimage 44(1):83–98

    Article  PubMed  Google Scholar 

  32. Stebbins G, Murphy C (2009) Diffusion tensor imaging in Alzheimer’s disease and mild cognitive impairment. Behav Neurol 21(1–2):39–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tristán-Vega A, Aja-Fernández S (2009) Design and construction of a realistic DWI phantom for filtering performance assessment. In: Medical image computing and computer-assisted intervention—MICCAI 2009. Springer, pp 951–958

  34. Tristán-Vega A, Aja-Fernández S (2010) DWI filtering using joint information for DTI and HARDI. Med Image Anal 14(2):205–218

    Article  PubMed  Google Scholar 

  35. Tuch DS (2004) Q-ball imaging. Magn Reson Med 52(6):1358–1372

    Article  PubMed  Google Scholar 

  36. Vasilić B, Rajapakse CS, Wehrli FW (2009) Classification of trabeculae into three-dimensional rodlike and platelike structures via local inertial anisotropy. Med Phys 36(7):3280–3291

    Article  PubMed  PubMed Central  Google Scholar 

  37. Westin CF, Maier SE, Mamata H, Nabavi A, Jolesz FA, Kikinis R (2002) Processing and visualization for diffusion tensor MRI. Med Image Anal 6(2):93–108

    Article  PubMed  Google Scholar 

  38. Wise T, Radua J, Nortje G, Cleare AJ, Young AH, Arnone D (2016) Voxel-based meta-analytical evidence of structural disconnectivity in major depression and bipolar disorder. Biol Psychiatry 79(4):293–302

    Article  PubMed  Google Scholar 

  39. Yendiki A, Koldewyn K, Kakunoori S, Kanwisher N, Fischl B (2014) Spurious group differences due to head motion in a diffusion MRI study. Neuroimage 88:79–90

    Article  PubMed  Google Scholar 

  40. Zou KH, Liu A, Bandos AI, Ohno-Machado L, Rockette HE (2011) Statistical evaluation of diagnostic performance: topics in ROC analysis. CRC Press, Boca Raton

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the company QDiagnóstica, Valladolid, Spain, whose facility has been used for data acquisition purposes and thank Dr. Miguel Angel Tola-Arribas for his valuable help with the recruitment and diagnosis of patients.

Funding   Felix Sebastian Leo Thomsen received a doctoral fellowship from Consejo Nacional de Investigaciones Científicas y Técnicas of Argentina (CONICET). This work was partially funded by the Universidad Nacional del Sur (PGI 24/K061). Rodrigo de Luis García has received research grants from Ministerio de Ciencia e Innovación of Spain (TEC 2013-44194-P), Fondo de Investigaciones Sanitarias (PI 11-01492) the Consejería de Sanidad de Castilla y León (BIO/VA30/14).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Sebastian Leo Thomsen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animals right

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomsen, F.S.L., Delrieux, C.A. & de Luis-García, R. Local texture descriptors for the assessment of differences in diffusion magnetic resonance imaging of the brain. Int J CARS 12, 389–398 (2017). https://doi.org/10.1007/s11548-016-1505-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-016-1505-1

Keywords

Navigation