Skip to main content

Advertisement

Log in

Analytical modeling and feasibility study of a multi-GPU cloud-based server (MGCS) framework for non-voxel-based dose calculations

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

In this paper, a multi-GPU cloud-based server (MGCS) framework is presented for dose calculations, exploring the feasibility of remote computing power for parallelization and acceleration of computationally and time intensive radiotherapy tasks in moving toward online adaptive therapies.

Methods

An analytical model was developed to estimate theoretical MGCS performance acceleration and intelligently determine workload distribution. Numerical studies were performed with a computing setup of 14 GPUs distributed over 4 servers interconnected by a 1 Gigabits per second (Gbps) network. Inter-process communication methods were optimized to facilitate resource distribution and minimize data transfers over the server interconnect.

Results

The analytically predicted computation time predicted matched experimentally observations within 1–5 %. MGCS performance approached a theoretical limit of acceleration proportional to the number of GPUs utilized when computational tasks far outweighed memory operations. The MGCS implementation reproduced ground-truth dose computations with negligible differences, by distributing the work among several processes and implemented optimization strategies.

Conclusions

The results showed that a cloud-based computation engine was a feasible solution for enabling clinics to make use of fast dose calculations for advanced treatment planning and adaptive radiotherapy. The cloud-based system was able to exceed the performance of a local machine even for optimized calculations, and provided significant acceleration for computationally intensive tasks. Such a framework can provide access to advanced technology and computational methods to many clinics, providing an avenue for standardization across institutions without the requirements of purchasing, maintaining, and continually updating hardware.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Foroudi F, Wong J, Kron T, Rolfo A, Haworth A, Roxby P, Thomas J, Herschtal A, Pham D, Williams S, Tai KH, Duchesne G (2011) Online adaptive radiotherapy for muscle-invasive bladder cancer: results of a pilot study. Int J Radiat Oncol 81(3):765–771

    Article  Google Scholar 

  2. Lindegaard J, Fokdal L, Nielsen S, Juul-Christensen J, Tanderup K (2013) Mri-guided adaptive radiotherapy in locally advanced cervical cancer from a nordic perspective. Acta Oncol 52(7):1510–1519

    Article  CAS  PubMed  Google Scholar 

  3. Nijkamp J, Marijnen C, Herk MV, Triest BV, Sonke J (2012) Adaptive radiotherapy for long course neo-adjuvant treatment of rectal cancer. Radiother Oncol 103(3):353–359

    Article  PubMed  Google Scholar 

  4. Schwartz D, Garden A, Thomas J, Chen Y, Zhang Y, Lewin J, Chambers M, Dong L (2012) Adaptive radiotherapy for head-and-neck cancer: initial clinical outcomes from a prospective trial. Int J Radiat Oncol 83(3):986–993

    Article  Google Scholar 

  5. Tuomikoski L, Collan J, Keyrilainen J, Visapaa H, Saarilahti K, Tenhunen M (2011) Adaptive radiotherapy in muscle invasive urinary bladder cancer—an effective method to reduce the irradiated bowel volume. Radiother Oncol 99(1):61–66

    Article  PubMed  Google Scholar 

  6. Capelle L, Mackenzie M, Field C, Parliament M, Ghosh S, Scrimger R (2012) Adaptive radiotherapy using helical tomotherapy for head-and-neck cancer in definitive and postoperative settings: initial results. Clin Oncol 24(3):208–215

    Article  CAS  Google Scholar 

  7. Castadot P, Lee JA, Geets X, Gregoire V (2010) Adaptive radiotherapy of head and neck cancer. Semin Radiat Oncol 20(2):84–93. doi:10.1016/j.semradonc.2009.11.002

    Article  PubMed  Google Scholar 

  8. Qi XS, Santhanam A, Neylon J, Min Y, Armstrong T, Sheng K, Staton R, Pukala J, Pham A, Low D, Lee S, Steinberg M, Manon R, Chen A, Kupelian P (2015) Near real-time assessment of anatomic and dosimetric variations for head-and-neck radiation therapy via graphics processing unit-based dose deformation framework. Int J Radiat Oncol 92(1):415–422

    Article  Google Scholar 

  9. Veiga C, McClelland J, Moinuddin S, Lourenco A, Ricketts K, Annkah J, Modat M, Ourselin S, D’Souza D, Royle G (2014) Toward adaptive radiotherapy for head and neck patients: feasibility study on using CT-to-CBCT deformable registration for “dose of the day” calculations. Med Phys 41(3):031703. doi:10.1118/1.4864240

    Article  PubMed  Google Scholar 

  10. Xing L, Siebers J, Keall P (2007) Computational challenges for image-guided radiation therapy: framework and current research. Semin Radiat Oncol 17(4):245–257

    Article  PubMed  Google Scholar 

  11. Dong P, Lee P, Ruan D, Long T, Romeijn E, Low D, Kupelian P, Abraham J, Yang Y, Sheng K (2013) 4PI noncoplanar stereotactic body radiation therapy for centrally located or larger lung tumors. Int J Radiat Oncol 86(3):407–413

    Article  Google Scholar 

  12. Dong P, Lee P, Ruan D, Long T, Romeijn E, Yang Y, Low D, Kupelian P, Sheng K (2013) 4PI non-coplanar liver sbrt: a novel delivery technique. Int J Radiat Oncol 85(5):1360–1366

    Article  Google Scholar 

  13. Neylon J, Qi X, Sheng K, Staton R, Pukala J, Manon R, Low DA, Kupelian P, Santhanam A (2015) A GPU based high-resolution multilevel biomechanical head and neck model for validating deformable image registration. Med Phys 42(1):232–243. doi:10.1118/1.4903504

    Article  CAS  PubMed  Google Scholar 

  14. Neylon J, Sheng K, Yu V, Low D, Kupelian P, Santhanam A (2014) A nonvoxel-based dose convolution/superposition algorithm optimized for scalable gpu architectures. Med Phys 41(10):101711

    Article  CAS  PubMed  Google Scholar 

  15. Santhanam AP, Y M, N H, P N, M SL, Kupelian P (2011) A multi-GPU real-time dose simulation software framework for lung radiotherapy. Int J Comput Assist Radiol Surg 7(5):705–719

    Article  Google Scholar 

  16. Constantin M, Sawkey D, Mansfield S, Svatos M (2011) SU-E-E-05: the compute cloud, a massive computing resource for patient-independent monte carlo dose calculations and other medical physics applications. Med Phys 38(6):3392

  17. Miras H, Jiminez R, Miras C, Goma C (2013) CloudMC: a cloud computing application for Monte Carlo simulation. Phys Med Biol 58:N125–N133

    Article  CAS  PubMed  Google Scholar 

  18. Poole C, Cornelius I, Trapp J, Langton C (2012) Radiotherapy Monte Carlo simulation using cloud computing technology. Australas Phys Eng 35(4):497–502

    Article  CAS  Google Scholar 

  19. Poole C, Cornelius I, Trapp J, Langton C (2011) Technical Note: Radiotherapy dose calculations using GEANT4 and the Amazon Elastic Compute Cloud. arXiv:1105.1408

  20. Meng B, Pratx G, Xing L (2011) Ultrafast and scalable cone-beam CT reconstruction using MapReduce in a cloud computing environment. Med Phys 38(12):6603–6609. doi:10.1118/1.3660200

  21. Kagadis GC, Kloukinas C, Moore K, Philbin J, Papadimitroulas P, Alexakos C, Nagy PG, Visvikis D, Hendee WR (2013) Cloud computing in medical imaging. Med Phys 40(7):070901. doi:10.1118/1.4811272

    Article  PubMed  Google Scholar 

  22. Moore KL, Kagadis GC, McNutt TR, Moiseenko V, Mutic S (2014) Vision 20/20: automation and advanced computing in clinical radiation oncology. Med Phys 41(1):010901. doi:10.1118/1.4842515

    Article  PubMed  Google Scholar 

  23. D’Haese PF, Konrad PE, Pallavaram S, Li R, Prassad P, Rodriguez W, Dawant BM (2015) CranialCloud: a cloud-based architecture to support trans-institutional collaborative efforts in neurodegenerative disorders. Int J Comput Assist Radiol Surg 10(6):815–823. doi:10.1007/s11548-015-1189-y

    Article  PubMed  PubMed Central  Google Scholar 

  24. Silva LA, Costa C, Oliveira JL (2013) DICOM relay over the cloud. Int J Comput Assist Radiol Surg 8(3):323–333. doi:10.1007/s11548-012-0785-3

    Article  PubMed  Google Scholar 

  25. Silva LA, Costa C, Oliveira JL (2012) A PACS archive architecture supported on cloud services. Int J Comput Assist Radiol Surg 7(3):349–358. doi:10.1007/s11548-011-0625-x

    Article  PubMed  Google Scholar 

  26. Griebel L, Prokosch H, Kopcke F, Toddenroth D, Christoph J, Leb I, Engel I, Sedlmayr M (2015) A scoping review of cloud computing in healthcare. Bmc Med Inform Decis 15(17):1

    Google Scholar 

  27. Stevens WR (1998) UNIX network programming, vol 1–2, 2nd edn. Prentice Hall PTR, Upper Saddle River

    Google Scholar 

  28. Kanso A, Ghebleh M (2015) An efficient and robust image encryption scheme for medical applications. Commun Nonlinear Sci 24(1–3):98–116. doi:10.1016/j.cnsns.2014.12.005

    Article  Google Scholar 

  29. Li M, Yu S, Zheng Y, Ren K, Lou W (2012) Scalable and secure sharing of personal health records in cloud computing using attribute-based encryption. IEEE Trans Parallel Distrib Syst 24(1):131–143. doi:10.1109/TPDS.2012.97

    Article  Google Scholar 

  30. Shao Z, Yang B, Zhang W, Zhao Y, Wu Z, Miao M (2015) Secure medical information sharing in cloud computing. Technol Health Care 23(Suppl 1):S133–S137. doi:10.3233/thc-150945

    Article  PubMed  Google Scholar 

  31. Page A, Kocabas O, Soyata T, Aktas M, Couderc JP (2015) Cloud-based privacy-preserving remote ECG monitoring and surveillance. Ann Noninvasive Electrocardiol. 20(4):328–337. doi:10.1111/anec.12204

    Article  PubMed  Google Scholar 

  32. Barhamgi M, Bandara AK, Yu YJ, Belhajjame K, Nuseibeh B (2016) Protecting privacy in the cloud: current practices. Future Dir Computer 49(2):68–72

    Google Scholar 

Download references

Acknowledgments

This work was funded in part by Varian and The National Science Foundation.

Funding The funding for this study consisted of contributions by Varian, the National Science Foundation (1200579), and the Ken & Wendy Ruby Foundation award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Neylon.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Patient data

This article does not contain patient data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neylon, J., Min, Y., Kupelian, P. et al. Analytical modeling and feasibility study of a multi-GPU cloud-based server (MGCS) framework for non-voxel-based dose calculations. Int J CARS 12, 669–680 (2017). https://doi.org/10.1007/s11548-016-1473-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-016-1473-5

Keywords

Navigation