Skip to main content

Advertisement

Log in

Complete fully automatic model-based segmentation of normal and pathological lymph nodes in CT data

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Exact and reproducible knowledge regarding the position, size, and type of the lymph nodes is often needed for tumor computer-aided diagnosis, treatment planning, and follow-up. An automatic segmentation method for CT data was developed that can identify and delineate normal as well as pathologically altered lymph nodes to satisfy this requirement.

Methods

A semi-automatic lymph node segmentation method was developed using a 3D Stable Mass-Spring Model (SMSM), based on parallel simulation of the shape model on CT scan images. The models are started across the whole dataset at all potential lymph node positions but will only adapt to the data where a lymph node is found. The node positions can be determined by an evaluation of the model’s quality of fit.

Results

Systematically chosen lymph nodes in 5 CT datasets, including enlarged, necrotic, fuzzy-bounded, and deformed lymph nodes, were used to evaluate the segmentation algorithm performance. A test set of 29 lymph nodes taken from 4 typical lymph node regions were included. All lymph nodes were detected automatically, while an additional 31% false-positive (n = 9) candidates were detected. The average calculation time was 2 min per dataset. The segmentation accuracy was comparable to the inter-observer variance of human experts.

Conclusions

Clinically relevant lymph nodes were detected within a few minutes and provided sufficient accuracy to demonstrate the feasibility of a new segmentation method. The test data were diverse, and the robust results suggest potential applicability to many kinds of lymph node abnormalities, except for extremely degenerated lymph nodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Sobin LH, Wittekind C (2002) TNM: classification of malignant tumours. Wiley-Liss

  2. Hintze J, Cordes J, Preim B (2005) Bildanalyse für die präoperative Planung von Neck Dissections. In: BVM

  3. Cordes J, Dornheim J, Preim B, Hertel I, Strauss G (2006) Pre-operative segmentation of neck ct datasets for the planning of neck dissections. In: SPIE: Medical Imaging

  4. Schreyer A et al (2005) Vergleich der Genauigkeit und Effizienz koronarer und axialer Rekonstruktionen zur Lymphknotendetektion bei einem 16-Zeilen-Spiral-CT am Beispiel von Halslymphknoten. RöFo: Fortschritte auf dem Gebiete der Röntgenstrahlen und der Nuklearmedizin 177: 1430–1435

    Article  CAS  PubMed  Google Scholar 

  5. Dornheim L, Tönnies KD, Dixon K (2005) Automatic segmentation of the left ventricle in 3D SPECT data by registration with a dynamic anatomic model. In: MICCAI

  6. Dornheim L, Tönnies KD, Dornheim J (2005) Stable dynamic 3D shape models. In: ICIP

  7. Rogowska J et al (1996) Evaluation of selected two-dimensional segmentation techniques for computed tomography quantification of lymph nodes. Invest Radiol 13: 138–145

    Article  Google Scholar 

  8. Yan J et al (2004) Lymph node segmentation from CT images using fast marching method. Comput Med Imaging Graph 28: 33–38

    Article  PubMed  Google Scholar 

  9. Honea D, Snyder WE (1999) Three-dimensional active surface approach to lymph node segmentation. In: SPIE: Medical Imaging 3361: 1003–1011

    Google Scholar 

  10. Dornheim J et al (2007) Segmentation of neck lymph nodes in ct datasets with stable 3d mass-spring models. Academic Radiology (Elsevier) MICCAI 2006 Special Issue

  11. Maleike D et al (2008) Lymph node segmentation on ct images by a shape model guided deformable surface method. In: SPIE: Medical Imaging

  12. Felzenszwalb PF, Huttenlocher DP (2005) Pictorial structures for object recognition. Int J Comput Vis 61: 55–79

    Article  Google Scholar 

  13. Carbonetto P, de Freitas N, Barnard K (2004) A statistical model for general contextual object recognition. In: ECCV

  14. Ferrari V, Tuytelaars T, Gool LV (2004) Simultaneous object recognition and segmentation by image exploration. In: ECCV

  15. Belongie S, Malik J, Puzicha J (2002) Shape matching and object recognition using shape contexts. IEEE Trans Pattern Anal Mach Intell 24: 509–522

    Article  Google Scholar 

  16. Coughlan J, Yuille A, English C, Snow D (2000) Efficient deformable template detection and localization without user initialization. Comput Vis Image Underst 78: 303–319

    Article  Google Scholar 

  17. Jain AK, Zhong Y, Lakshmanan S (1996) Object matching using deformable templates. IEEE Trans Pattern Anal Mach Intell 18: 267–278

    Article  Google Scholar 

  18. Keren D, Subrahmonia J, Cooper DB (1992) Robust object recognition based on implicit algebraic curves and surfaces. In: ICPR 791–794

  19. Ballard DH (1981) Generalizing the hough transform to detect arbitrary shapes. Pattern Recognit 13: 111–122

    Article  Google Scholar 

  20. Kitasaka T, Tsujimura Y, Nakamura Y, Mori K, Suenaga Y, Ito M, Nawano S (2007) Automated extraction of lymph nodes from 3-d abdominal ct images using 3-d minimum directional difference filter. In: MICCAI

  21. Cootes TF, Taylor CJ, Cooper DH, Graham J (1995) Active shape models—their training and application. CVIU 61: 38–59

    Google Scholar 

  22. Delingette H (1994) Simplex meshes: a general representation for 3D shape reconstruction. In: CVPR 856–857

  23. Bardinet E, Cohen LD, Ayache N (1998) A parametric deformable model to fit unstructured 3D data. CVIU 71: 39–54

    Google Scholar 

  24. Dornheim L, Dornheim J, Tönnies KD (2006) Automatic generation of dynamic 3d models for medical segmentation tasks. In: SPIE: Medical Imaging

  25. Dornheim L (2008) Quality of fit of stable mass-spring models. Pattern Recognit Image Anal 18: 359–364

    Article  Google Scholar 

  26. Bergner S, Al-Zubi S, Tönnies K (2004) Deformable structural models. In: ICIP

  27. Cohen LD (1991) On active contour models and ballons. CVGIP: Image Underst 53: 211–218

    Article  Google Scholar 

  28. Dornheim L, Dornheim J, Seim H, Tönnies KD (2006) Aktive Sensoren: Kontextbasierte Filterung von Merkmalen zur modellbasierten Segmentierung. In: Bildverarbeitung für die Medizin

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Dornheim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dornheim, L., Dornheim, J. & Rössling, I. Complete fully automatic model-based segmentation of normal and pathological lymph nodes in CT data. Int J CARS 5, 565–581 (2010). https://doi.org/10.1007/s11548-010-0530-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-010-0530-8

Keywords

Navigation