Skip to main content

Advertisement

Log in

Morphological, dynamic and functional characteristics of liver pseudolesions and benign lesions

  • Abdominal Radiology
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related deaths worldwide and one of the most common causes of death among patients with cirrhosis, developing in 1–8% of them every year, regardless of their cirrhotic stage. The radiological features of HCC are almost always sufficient for reaching the diagnosis; thus, histological confirmation is rarely needed. However, the study of cirrhotic livers remains a challenge for radiologists due to the developing of fibrous and regenerative tissue that cause the distortion of normal liver parenchyma, changing the typical appearances of benign lesions and pseudolesions, which therefore may be misinterpreted as malignancies. In addition, a correct distinction between pseudolesions and malignancy is crucial to allow appropriate targeted therapy and avoid treatment delays.

The present review encompasses technical pitfalls and describes focal benign lesions and pseudolesions that may be misinterpreted as HCC in cirrhotic livers, providing the imaging features of regenerative nodules, large regenerative nodules, siderotic nodules, hepatic hemangiomas (including rapidly filling and sclerosed hemangiomas), segmental hyperplasia, arterioportal shunts, focal confluent fibrosis and focal fatty changes. Lastly, the present review explores the most promising new imaging techniques that are emerging and that could help radiologists differentiate benign lesions and pseudolesions from overt HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and materials

No new data were created or analyzed in this study. Data sharing is not applicable to this review.

References

  1. Vilgrain V, Lagadec M, Ronot M (2016) Pitfalls in liver imaging. Radiology 278(1):34–51. https://doi.org/10.1148/radiol.2015142576

    Article  PubMed  Google Scholar 

  2. Ioannou GN, Splan MF, Weiss NS, McDonald GB, Beretta L, Lee SP (2007) Incidence and predictors of hepatocellular carcinoma in patients with cirrhosis. Clin Gastroenterol Hepatol 5:938–945. https://doi.org/10.1016/j.cgh.2007.02.039

    Article  PubMed  Google Scholar 

  3. Guarino M, Sessa A, Cossiga V, Morando F, Caporaso N, Morisco F (2018) Special Interest Group on “Hepatocellular carcinoma and new anti-HCV therapies” of the Italian Association for the Study of the Liver. Direct-acting antivirals and hepatocellular carcinoma in chronic hepatitis C: A few lights and many shadows. World J Gastroenterol 24(24):2582–2595. https://doi.org/10.3748/wjg.v24.i24.2582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mittal S, El-Serag HB (2013) Epidemiology of hepatocellular carcinoma: consider the population. J Clin Gastroenterol 47(Suppl(0)):S2-6. https://doi.org/10.1097/MCG.0b013e3182872f29

    Article  PubMed  PubMed Central  Google Scholar 

  5. Cucchetti A, Trevisani F, Cappelli A, Mosconi C, Renzulli M, Pinna AD, Golfieri R (2016) Cost-effectiveness of doxorubicin-eluting beads versus conventional trans-arterial chemo-embolization for hepatocellular carcinoma. Dig Liver Dis 48(7):798–805. https://doi.org/10.1016/j.dld.2016.03.031

    Article  PubMed  Google Scholar 

  6. Tovoli F, Renzulli M, Negrini G, Brocchi S, Ferrarini A, Andreone A, Benevento F, Golfieri R, Morselli-Labate AM, Mastroroberto M, Badea RI, Piscaglia F (2018) Inter-operator variability and source of errors in tumour response assessment for hepatocellular carcinoma treated with sorafenib. Eur Radiol 28(9):3611–3620. https://doi.org/10.1007/s00330-018-5393-3

    Article  PubMed  Google Scholar 

  7. Renzulli M, Peta G, Vasuri F, Marasco G, Caretti D, Bartalena L, Spinelli D, Giampalma E, D’Errico A, Golfieri R (2020) Standardization of conventional chemoembolization for hepatocellular carcinoma. Ann Hepatol 29(22):100278. https://doi.org/10.1016/j.aohep.2020.10.006

    Article  CAS  Google Scholar 

  8. Gabelloni M, Di Nasso M, Morganti R et al (2020) Application of the ESR iGuide clinical decision support system to the imaging pathway of patients with hepatocellular carcinoma and cholangiocarcinoma: preliminary findings. Radiol Med 125(6):531–537. https://doi.org/10.1007/s11547-020-01142-w

    Article  PubMed  Google Scholar 

  9. Esposito A, Buscarino V, Raciti D et al (2020) Characterization of liver nodules in patients with chronic liver disease by MRI: performance of the Liver Imaging Reporting and Data System (LI-RADS vol 2018) scale and its comparison with the Likert scale. Radiol Med 125(1):15–23. https://doi.org/10.1007/s11547-019-01092-y

    Article  PubMed  Google Scholar 

  10. Park BV, Gaba RC, Huang YH, Chen YF, Guzman G, Lokken R (2019) Histology of hepatocellular carcinoma: association with clinical features, radiological findings, and locoregional therapy out- comes. J Clin Imaging Sci. 9:52. https://doi.org/10.25259/JCIS_111_2019

    Article  PubMed  PubMed Central  Google Scholar 

  11. Agni RM (2017) Diagnostic histopathology of hepatocellular carcinoma: a case-based review. Semin Diagn Pathol 34(2):126–137. https://doi.org/10.1053/j.semdp.2016.12.008

    Article  PubMed  Google Scholar 

  12. European Association for the Study of the Liver. Electronic address: easloffice@easloffice.eu; European Association for the Study of the Liver. EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma [published correction appears in J Hepatol. 2019 Apr;70(4):817]. J Hepatol. 2018;69(1):182–236. https://doi.org/10.1016/j.jhep.2018.03.019

  13. Facciorusso A, Serviddio G, Muscatiello N (2016) Transarterial radioembolization vs chemoembolization for hepatocarcinoma patients: a systematic review and meta-analysis. World J Hepatol 8(18):770–778. https://doi.org/10.4254/wjh.v8.i18.770

    Article  PubMed  PubMed Central  Google Scholar 

  14. Facciorusso A, Del Prete V, Antonino M et al (2014) Post-recurrence survival in hepatocellular carcinoma after percutaneous radiofrequency ablation. Dig Liver Dis 46(11):1014–1019. https://doi.org/10.1016/j.dld.2014.07.012

    Article  PubMed  Google Scholar 

  15. Facciorusso A, Bellanti F, Villani R et al (2017) Transarterial chemoembolization vs bland embolization in hepatocellular carcinoma: a meta-analysis of randomized trials. United European Gastroenterol J 5(4):511–518. https://doi.org/10.1177/2050640616673516

    Article  PubMed  Google Scholar 

  16. Granito A, Marinelli S, Terzi E et al (2015) Metronomic capecitabine as second-line treatment in hepatocellular carcinoma after sorafenib failure. Dig Liver Dis 47(6):518–522. https://doi.org/10.1016/j.dld.2015.03.010

    Article  CAS  PubMed  Google Scholar 

  17. Vasuri F, Golfieri R, Fiorentino M, Capizzi E, Renzulli M, Pinna AD, Grigioni WF, D’Errico-Grigioni A (2011) OATP 1B1/1B3 expression in hepatocellular carcinomas treated with orthotopic liver transplantation. Virchows Arch 459(2):141–146. https://doi.org/10.1007/s00428-011-1099-5

    Article  CAS  PubMed  Google Scholar 

  18. Barabino M, Gurgitano M, Fochesato C et al (2021) LI-RADS to categorize liver nodules in patients at risk of HCC: tool or a gadget in daily practice? Radiol Med 126(1):5–13. https://doi.org/10.1007/s11547-020-01225-8

    Article  PubMed  Google Scholar 

  19. Li J, Cao B, Bi X, Chen W, Wang L, Du Z, Zhang X, Yu X (2021) Evaluation of liver function in patients with chronic hepatitis B using Gd-EOB-DTPA-enhanced T1 mapping at different acquisition time points: a feasibility study. Radiol Med 126(9):1149–1158. https://doi.org/10.1007/s11547-021-01382-4

    Article  PubMed  Google Scholar 

  20. Chan MV, Huo YR, Trieu N, Mitchelle A, George J, He E, Lee AU, Chang J, Yang J (2021) Non-contrast MRI for hepatocellular carcinoma detection: a systematic review and meta-analysis - a potential surveillance tool? Clin Gastroenterol Hepatol S1542–3565(21):00215–00219. https://doi.org/10.1016/j.cgh.2021.02.036

    Article  Google Scholar 

  21. Galia M, Taibbi A, Marin D, Furlan A, Dioguardi Burgio M, Agnello F, Cabibbo G, Van Beers BE, Bartolotta TV, Midiri M, Lagalla R, Brancatelli G (2014) Focal lesions in cirrhotic liver: what else beyond hepatocellular carcinoma? Diagn Interv Radiol 20:222–228. https://doi.org/10.5152/dir.2014.13184

    Article  PubMed  PubMed Central  Google Scholar 

  22. Brancatelli G, Baron RL, Peterson MS, Marsh W (2003) Helical CT screening for hepatocellular carcinoma in patients with cirrhosis: frequency and causes of false- positive interpretation. AJR Am J Roentengnol 180:1007–1014. https://doi.org/10.2214/ajr.180.4.1801007

    Article  Google Scholar 

  23. Zeng D, Xu M, Liang JY, Cheng MQ, Huang H, Pan JM, Huang Y, Tong WJ, Xie XY, Lu MD, Kuang M, Chen LD, Hu HT, Wang W (2021) Using new criteria to improve the differentiation between HCC and non-HCC malignancies: clinical practice and discussion in CEUS LI-RADS 2017. Radiol Med. https://doi.org/10.1007/s11547-021-01417-w

    Article  PubMed  Google Scholar 

  24. Barabino M, Gurgitano M, Fochesato C, Angileri SA, Franceschelli G, Santambrogio R, Mariani NM, Opocher E, Carrafiello G (2021) LI-RADS to categorize liver nodules in patients at risk of HCC: tool or a gadget in daily practice? Radiol Med 126(1):5–13. https://doi.org/10.1007/s11547-020-01225-8

    Article  PubMed  Google Scholar 

  25. Giannini EG, Moscatelli A, Pellegatta G, Vitale A, Farinati F, Ciccarese F, Piscaglia F, Rapaccini GL, Di Marco M, Caturelli E, Zoli M, Borzio F, Cabibbo G, Felder M, Sacco R, Morisco F, Missale G, Foschi FG, Gasbarrini A, Baroni GS, Virdone R, Masotto A, Trevisani F (2016) Italian liver cancer (ITA.LI.CA) Group; Italian Liver Cancer ITA LI CA Group. Application of the intermediate-stage subclassification to patients with untreated hepatocellular carcinoma. Am J Gastroenterol 111(1):70–77. https://doi.org/10.1038/ajg.2015.389

    Article  CAS  PubMed  Google Scholar 

  26. Renzulli M, Brocchi S, Ierardi AM, Milandri M, Pettinari I, Lucidi V, Balacchi C, Muratori P, Marasco G, Vara G, Tovoli F, Granito A, Carrafiello G, Piscaglia F, Golfieri R (2021) Imaging-based diagnosis of benign lesions and pseudolesions in the cirrhotic liver. Magn Reson Imaging 75:9–20. https://doi.org/10.1016/j.mri.2020.09.008

    Article  PubMed  Google Scholar 

  27. Hayashi M, Matsui O, Ueda K, Kawamori Y, Gabata T, Kadoya M (2002) Progression to hypervascular hepatocellular carcinoma: correlation with intranodular blood supply evaluated with CT during intraarterial injection of contrast material. Radiology 225:143–149. https://doi.org/10.1148/radiol.2251011298

    Article  PubMed  Google Scholar 

  28. Gatti M, Calandri M, Bergamasco L et al (2020) Characterization of the arterial enhancement pattern of focal liver lesions by multiple arterial phase magnetic resonance imaging: comparison between hepatocellular carcinoma and focal nodular hyperplasia. Radiol Med 125(4):348–355. https://doi.org/10.1007/s11547-019-01127-4

    Article  PubMed  Google Scholar 

  29. Russo V, Renzulli M, Buttazzi K, Fattori R (2006) Acquired diseases of the thoracic aorta: role of MRI and MRA. Eur Radiol 16(4):852–865. https://doi.org/10.1007/s00330-005-0028-x

    Article  PubMed  Google Scholar 

  30. Compagnone G, Giampalma E, Domenichelli S, Renzulli M, Golfieri R (2012) Calculation of conversion factors for effective dose for various interventional radiology procedures. Med Phys 39(5):2491–2498. https://doi.org/10.1118/1.3702457

    Article  PubMed  Google Scholar 

  31. Marrero JA, Ahn J, Rajender Reddy K (2014 ) Americal college of gastroenterology. ACG clinical guideline: the diagnosis and management of focal liver lesions. Am J Gastroenterol. 109(9):1328–1347; quiz 1348. https://doi.org/10.1038/ajg.2014.213

  32. Colagrande S, Centi N, La Villa G, Villari N (2004) Transient hepatic attenuation differences. AJR Am J Roentgenol 183(2):459–464. https://doi.org/10.2214/ajr.183.2.1830459

    Article  PubMed  Google Scholar 

  33. Takayasu K, Furukawa H, Wakao F, Muramatsu Y, Abe H, Terauchi T, Winter TC 3rd, Sakamoto M, Hirohashi S (1995) CT diagnosis of early hepatocellular carcinoma: sensitivity, findings, and CT-pathologic correlation. AJR Am J Roentgenol 164(4):885–890. https://doi.org/10.2214/ajr.164.4.7726041

    Article  CAS  PubMed  Google Scholar 

  34. Takayasu K, Arii S, Sakamoto M, Matsuyama Y, Kudo M, Ichida T, Nakashima O, Matsui O, Izumi N, Ku Y, Kokudo N, Makuuchi M (2013) Liver cancer study group of Japan. Clinical implication of hypovascular hepatocellular carcinoma studied in 4,474 patients with solitary tumour equal or less than 3 cm. Liver Int 33(5):762–770. https://doi.org/10.1111/liv.12130

    Article  CAS  PubMed  Google Scholar 

  35. Lim JH, Choi D, Kim SH, Lee SJ, Lee WJ, Lim HK, Kim S (2002) Detection of hepatocellular carcinoma: value of adding delayed phase imaging to dual-phase helical CT. AJR Am J Roentgenol 179(1):67–73. https://doi.org/10.2214/ajr.179.1.1790067

    Article  PubMed  Google Scholar 

  36. Renzulli M, Golfieri R (2016) Bologna Liver Oncology Group (BLOG). Proposal of a new diagnostic algorithm for hepatocellular carcinoma based on the Japanese guidelines but adapted to the Western world for patients under surveillance for chronic liver disease. J Gastroenterol Hepatol 31(1):69–80. https://doi.org/10.1111/jgh.13150

    Article  PubMed  Google Scholar 

  37. Coleman WB (2003) Mechanisms of human hepatocarcinogenesis. Curr Mol Med 3:573–588. https://doi.org/10.2174/1566524033479546

    Article  CAS  PubMed  Google Scholar 

  38. Hanna RF, Aguirre DA, Kased N, Emery SC, Peterson MR, Sirlin CB (2008) Cirrhosis-associated hepatocellular nodules: correlation of histopathologic and MR imaging features. Radiographics 28:747–749. https://doi.org/10.1148/rg.283055108

    Article  PubMed  Google Scholar 

  39. International Working Party (1995) Terminology of nodular hepatocellular lesions. Hepatology 22:983–993. https://doi.org/10.1016/0270-9139(95)90324-0

    Article  Google Scholar 

  40. Elsayes KM, Shaaban AM (2015) Specialty imaging: pitfalls and classic signs of the abdomen and pelvis. Elsevier, Philadelphia

    Google Scholar 

  41. Hussain SM, Semelka RC, Mitchell DG (2002) MR imaging of hepatocellular carcinoma. Magn Reson Imaging Clin N Am 10:31–52. https://doi.org/10.1016/s1064-9689(03)00048-5

    Article  PubMed  Google Scholar 

  42. Kondo F (2001) Benign nodular hepatocellular lesions caused by abnormal hepatic circulation: etiological analysis and introduction of a new concept. J Gastroenterol Hepatol 16(12):1319–1328. https://doi.org/10.1046/j.1440-1746.2001.02576.x

    Article  CAS  PubMed  Google Scholar 

  43. Brancatelli G, Federle MP, Grazioli L, Golfieri R, Lencioni R (2002) Benign regenerative nodules in Budd-Chiari syndrome and other vascular disorders of the liver: radiologic-pathologic and clinical correlation. Radiographics 22(4):847–862. https://doi.org/10.1148/radiographics.22.4.g02jl17847

    Article  PubMed  Google Scholar 

  44. Renzulli M, Lucidi V, Mosconi C, Quarneti C, Giampalma E, Golfieri R (2011) Large regenerative nodules in a patient with Budd-Chiari syndrome after TIPS positioning while on the liver transplantation list diagnosed by Gd-EOB-DTPA MRI. Hepatobiliary Pancreat Dis Int 10(4):439–442. https://doi.org/10.1016/s1499-3872(11)60075-1

    Article  PubMed  Google Scholar 

  45. Wanless IR (1990) Micronodular transformation (nodular regenerative hyperplasia) of the liver: a report of 64 cases among 2500 autopsies and a new classification of benign hepatocellular nodules. Hepatology 11(5):787–797. https://doi.org/10.1002/hep.1840110512

    Article  CAS  PubMed  Google Scholar 

  46. Stromeyer FW, Ishak KG (1981) Nodular transformation (nodular “regenerative” hyperplasia) of the liver. A clinicopathologic study of 30 cases. Hum Pathol 12(1):60–71. https://doi.org/10.1016/s0046-8177(81)80242-0

    Article  CAS  PubMed  Google Scholar 

  47. Vilgrain V, Lewin M, Vons C, Denys A, Valla D, Flejou JF, Belghiti J, Menu Y (1999) Hepatic nodules in Budd-Chiari syndrome: imaging features. Radiology 210(2):443–450. https://doi.org/10.1148/radiology.210.2.r99fe13443

    Article  CAS  PubMed  Google Scholar 

  48. Mamone G, Carollo V, Di Piazza A, Cortis K, Degiorgio S, Miraglia R (2019) Budd-Chiari Syndrome and hepatic regenerative nodules: Magnetic resonance findings with emphasis of hepatobiliary phase. Eur J Radiol 117:15–25. https://doi.org/10.1016/j.ejrad.2019.05.015

    Article  PubMed  Google Scholar 

  49. Mitchell DG, Rubin R, Siegelman ES, Burk DL, Rifkin MD (1991) Hepatocellular carcinoma within siderotic regenerative nodules: appearance as a nodule within a nodule on MR images. Radiology 178:101–103. https://doi.org/10.1148/radiology.178.1.1845784

    Article  CAS  PubMed  Google Scholar 

  50. Chen W, DelProposto Z, Wu D, Wang J, Jiang Q, Xuan S, Ye Y, Zhang Z, Hu J (2012) Improved siderotic nodule detection in cirrhosis with susceptibility-weighted magnetic resonance imaging: a prospective study. PLoS ONE 7(5):e36454. https://doi.org/10.1371/journal.pone.0036454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Siegelman ES, Chauhan A (2014) MR characterization of focal liver lesions: pearls and pitfalls. Magn Reson Imaging Clin N Am 22:295–313. https://doi.org/10.1016/j.mric.2014.04.005

    Article  PubMed  Google Scholar 

  52. Li RK, Zeng MS, Qiang JW, Palmer SL, Chen F, Rao SX, Chen LL, Dai YM (2017) Improving detection of iron deposition in cirrhotic liver using susceptibility-weighted imaging with emphasis on histopathological correlation. J Comput Assist Tomogr 41(1):18–24. https://doi.org/10.1097/RCT.0000000000000484

    Article  PubMed  Google Scholar 

  53. Karhunen PJ (1986) Benign hepatic tumours and tumour like conditions in men. J Clin Pathol 39(2):183–188. https://doi.org/10.1136/jcp.39.2.183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mathew RP, Sam M, Raubenheimer M, Patel V, Low G (2020) Hepatic hemangiomas: the various imaging avatars and its mimickers. Radiol Med 125(9):801–815. https://doi.org/10.1007/s11547-020-01185-z

    Article  PubMed  Google Scholar 

  55. Bajenaru N, Balaban V, Săvulescu F, Campeanu I, Patrascu T (2015) Hepatic hemangioma -review-. J Med Life. ;8 Spec Issue(Spec Issue):4–11

  56. Duran R, Ronot M, Di Renzo S, Gregoli B, Van Beers BE, Vilgrain V (2015) Is magnetic resonance imaging of hepatic hemangioma any different in liver fibrosis and cirrhosis compared to normal liver? Eur J Radiol 84(5):816–822. https://doi.org/10.1016/j.ejrad.2015.01.016

    Article  PubMed  Google Scholar 

  57. Brancatelli G, Federle MP, Blachar A, Grazioli L (2001) Hemangioma in the cirrhotic liver: diagnosis and natural history. Radiology 219(1):69–74. https://doi.org/10.1148/radiology.219.1.r01ap3269

    Article  CAS  PubMed  Google Scholar 

  58. Shin N, Choi JA, Choi JM, Cho ES, Kim JH, Chung JJ, Yu JS (2020) Sclerotic changes of cavernous hemangioma in the cirrhotic liver: long-term follow-up using dynamic contrast-enhanced computed tomography. Radiol Med 125(12):1225–1232. https://doi.org/10.1007/s11547-020-01221-y

    Article  PubMed  Google Scholar 

  59. Kim TK, Lee E, Jang HJ (2015) Imaging findings of mimickers of hepatocellular carcinoma. Clin Mol Hepatol 21(4):326–343. https://doi.org/10.3350/cmh.2015.21.4.326

    Article  PubMed  PubMed Central  Google Scholar 

  60. Sousa MS, Ramalho M, Herédia V, Matos AP, Palas J, Jeon YH, Afonso D, Semelka RC (2014) Perilesional enhancement of liver cavernous hemangiomas in magnetic resonance imaging. Abdom Imaging 39(4):722–730. https://doi.org/10.1007/s00261-014-0100-6

    Article  PubMed  Google Scholar 

  61. Duran R, Ronot M, Kerbaol A, Van Beers B, Vilgrain V (2014) Hepatic hemangiomas: factors associated with T2 shine-through effect on diffusion-weighted MR sequences. Eur J Radiol 83(3):468–478. https://doi.org/10.1016/j.ejrad.2013.11.023

    Article  PubMed  Google Scholar 

  62. Taouli B, Koh DM (2010) Diffusion-weighted MR imaging of the liver. Radiology 254(1):47–66. https://doi.org/10.1148/radiol.09090021

    Article  PubMed  Google Scholar 

  63. Mastropasqua M, Kanematsu M, Leonardou P, Braga L, Woosley JT, Semelka RC (2004) Cavernous hemangiomas in patients with chronic liver disease: MR imaging findings. Magn Reson Imaging 22(1):15–18. https://doi.org/10.1016/j.mri.2003.02.001

    Article  PubMed  Google Scholar 

  64. Kim TK, Choi BI, Han JK, Hong HS, Park SH, Moon SG (2000) Hepatic tumors: contrast agent-enhancement patterns with pulse-inversion harmonic US. Radiology 216(2):411–417. https://doi.org/10.1148/radiology.216.2.r00jl21411

    Article  CAS  PubMed  Google Scholar 

  65. Jang HJ, Kim TK, Lim HK, Park SJ, Sim JS, Kim HY, Lee JH (2003) Hepatic hemangioma: atypical appearances on CT, MR imaging, and sonography. AJR Am J Roentgenol 180(1):135–141. https://doi.org/10.2214/ajr.180.1.1800135

    Article  PubMed  Google Scholar 

  66. Goodwin MD, Dobson JE, Sirlin CB, Lim BG, Stella DL (2011) Diagnostic challenges and pitfalls in MR imaging with hepatocyte-specific contrast agents. Radiographics 31(6):1547–1568. https://doi.org/10.1148/rg.316115528

    Article  PubMed  Google Scholar 

  67. Francisco FA, de Araújo AL, Oliveira Neto JA, Parente DB (2014) Hepatobiliary contrast agents: differential diagnosis of focal hepatic lesions, pitfalls and other indications. Radiol Bras 47:301–309. https://doi.org/10.1590/0100-3984.2013.1867

    Article  PubMed  PubMed Central  Google Scholar 

  68. Doo KW, Lee CH, Choi JW, Lee J, Kim KA, Park CM (2009) “Pseudo washout” sign in high- flow hepatic hemangioma on gadoxetic acid contrast-enhanced MRI mimicking hypervascular tumor. AJR Am J Roentgenol 193:W490–W496. https://doi.org/10.2214/AJR.08.1732

    Article  PubMed  Google Scholar 

  69. Kim B, Byun JH, Kim HJ, Won HJ, Kim SY, Shin YM, Kim PN (2016) Enhancement patterns and pseudo-washout of hepatic haemangiomas on gadoxetate disodium- enhanced liver MRI. Eur Radiol 26:191–198. https://doi.org/10.1007/s00330-015-3798-9

    Article  PubMed  Google Scholar 

  70. Dioguardi Burgio M, Ronot M, Paulatto L, Terraz S, Vilgrain V, Brancatelli G (2016) Avoiding pitfalls in the interpretation of gadoxetic acid-enhanced magnetic resonance imaging. Semin Ultrasound CT MR 37:561–572. https://doi.org/10.1053/j.sult.2016.08.002

    Article  PubMed  Google Scholar 

  71. Brancatelli G, Baron RL, Federle MP, Sparacia G, Pealer K (2009) Focal confluent fibrosis in cirrhotic liver: natural history studied with serial CT. AJR Am J Roentgenol 192(5):1341–1347. https://doi.org/10.2214/AJR.07.2782

    Article  PubMed  Google Scholar 

  72. Shin N, Choi JA, Choi JM et al (2020) Sclerotic changes of cavernous hemangioma in the cirrhotic liver: long-term follow-up using dynamic contrast-enhanced computed tomography. Radiol Med 125(12):1225–1232. https://doi.org/10.1007/s11547-020-01221-y

    Article  PubMed  Google Scholar 

  73. Itai Y, Saida Y (2002) Pitfalls in liver imaging. Eur Radiol 12:1162–1174. https://doi.org/10.1007/s00330-001-1178-0

    Article  PubMed  Google Scholar 

  74. Kim YY, Kang TW, Cha DI, Min JH, Kim YK, Kim SH, Sinn DH, Won H, Kim S (2021) Gadoxetic acid-enhanced MRI for differentiating hepatic sclerosing hemangioma from malignant tumor. Eur J Radiol 135:109474. https://doi.org/10.1016/j.ejrad.2020.109474

    Article  PubMed  Google Scholar 

  75. Renzulli M, Capozzi N, Clemente A, Tovoli F, Cappabianca S, Golfieri R (2019) What happened to my liver lesion (Hepatic Sclerosed Hemangioma)? Let’s not forget (radiological) history. Acta Gastroenterol Belg 82(4):554–555

    CAS  PubMed  Google Scholar 

  76. Chen Y, Pan Y, Shen KR, Zhu XL, Lu CY, Li QH, Han SG, Fu YB, Xu XF, Yu RS (2017) Contrast-enhanced multiple-phase imaging features of intrahepatic mass-forming cholangiocarcinoma and hepatocellular carcinoma with cirrhosis: A comparative study. Oncol Lett 14(4):4213–4219. https://doi.org/10.3892/ol.2017.6656

    Article  PubMed  PubMed Central  Google Scholar 

  77. Miraglia R, Maruzzelli L, Cannataci C et al (2020) Radiation exposure during transjugular intrahepatic portosystemic shunt creation in patients with complete portal vein thrombosis or portal cavernoma. Radiol Med 125(7):609–617. https://doi.org/10.1007/s11547-020-01155-5

    Article  PubMed  Google Scholar 

  78. Zhao YJ, Chen WX, Wu DS, Zhang WY, Zheng LR (2016) Differentiation of mass-forming intrahepatic cholangiocarcinoma from poorly differentiated hepatocellular carcinoma: based on the multivariate analysis of contrast-enhanced computed tomography findings. Abdom Radiol (NY) 41(5):978–989. https://doi.org/10.1007/s00261-015-0629-z

    Article  Google Scholar 

  79. Gatti M, Calandri M, Bergamasco L, Darvizeh F, Grazioli L, Inchingolo R, Ippolito D, Rousset S, Veltri A, Fonio P, Faletti R (2020) Characterization of the arterial enhancement pattern of focal liver lesions by multiple arterial phase magnetic resonance imaging: comparison between hepatocellular carcinoma and focal nodular hyperplasia. Radiol Med 125(4):348–355. https://doi.org/10.1007/s11547-019-01127-4

    Article  PubMed  Google Scholar 

  80. Bilreiro C, Soler JC, Ayuso JR, Caseiro-Alves F, Ayuso C (2021) Diagnostic value of morphological enhancement patterns in the hepatobiliary phase of gadoxetic acid-enhanced MRI to distinguish focal nodular hyperplasia from hepatocellular adenoma. Radiol Med 126(11):1379–1387. https://doi.org/10.1007/s11547-021-01403-2

    Article  PubMed  Google Scholar 

  81. Quiroga S, Sebastia C, Pallisa E, Castellà E, Pérez-Lafuente M, Alvarez-Castells A (2001) Improved diagnosis of hepatic perfusion disorders: value of hepatic arterial phase imaging during helical CT. Radiographics 21:65–81. https://doi.org/10.1148/radiographics.21.1.g01ja0165

    Article  CAS  PubMed  Google Scholar 

  82. Kamel IR, Liapi E, Fishman EK (2006) Incidental nonneoplastic hypervascular lesions in the noncirrhotic liver: diagnosis with 16-MDCT and 3D CT angiography. AJR Am J Roentgenol 187:682–687. https://doi.org/10.2214/AJR.05.0310

    Article  PubMed  Google Scholar 

  83. Lee SJ, Lim JH, Lee WJ, Lim HK, Choo SW, Choo IW (1997) Transient subsegmental hepatic parenchymal enhancement on dynamic CT: a sign of postbiopsy arterioportal shunt. J Comput Assist Tomogr 21:355–360. https://doi.org/10.1097/00004728-199705000-00004

    Article  CAS  PubMed  Google Scholar 

  84. Choi BI, Lee KH, Han JK, Lee JM (2002) Hepatic arterioportal shunts: dynamic CT and MR features. Korean J Radiol 3:1–15. https://doi.org/10.3348/kjr.2002.3.1.1

    Article  PubMed  PubMed Central  Google Scholar 

  85. Itai Y, Furui S, Ohtomo K, Kokubo T, Yamauchi T, Minami M, Yashiro N (1986) Dynamic CT features of arterioportal shunts in hepatocellular carcinoma. AJR Am J Roentgenol 146:723–727. https://doi.org/10.2214/ajr.146.4.723

    Article  CAS  PubMed  Google Scholar 

  86. Oliver JH 3rd, Baron RL (1996) Helical biphasic contrast enhanced CT of the liver: technique, indications, interpretation, and pitfalls. Radiology 201:1–14. https://doi.org/10.1148/radiology.201.1.8816509

    Article  PubMed  Google Scholar 

  87. Shimizu A, Ito K, Koike S, Fujita T, Shimizu K, Matsunaga N (2003) Cirrhosis or chronic hepatitis: evaluation of small (≤2-cm) early enhancing hepatic lesions with serial contrast-enhanced dynamic MR imaging. Radiology 226:550–555. https://doi.org/10.1148/radiol.2262011967

    Article  PubMed  Google Scholar 

  88. Kim TK, Choi BI, Han JK, Chung JW, Park JH, Han MC (1998) Nontumorous arterioportal shunt mimicking hypervascular tumor in cirrhotic liver: two-phase spiral CT findings. Radiology 208:597–603. https://doi.org/10.1148/radiology.208.3.9722834

    Article  CAS  PubMed  Google Scholar 

  89. Ronot M, Dioguardi Burgio M, Purcell Y, Pommier R, Brancatelli G, Vilgrain V (2017) Focal lesions in cirrhosis: not always HCC. Eur J Radiol 93:157–168. https://doi.org/10.1016/j.ejrad.2017.05.040

    Article  PubMed  Google Scholar 

  90. Torabi M, Hosseinzadeh K, Federle MP (2008) CT of nonneoplastic hepatic vascular and perfusion disorders. Radiographics 28:1967–1982. https://doi.org/10.1148/rg.287085067

    Article  PubMed  Google Scholar 

  91. Colagrande S, Centi N, Galdiero R, Ragozzino A (2007) Transient hepatic intensity differences: part 2, Those not associated with focal lesions. AJR Am J Roentgenol 188:160–166. https://doi.org/10.2214/AJR.05.1367

    Article  PubMed  Google Scholar 

  92. Colagrande S, Centi N, Galdiero R, Ragozzino A (2007) Transient hepatic intensity differences: part 1, Those associated with focal lesions. AJR Am J Roentgenol 188:154–159. https://doi.org/10.2214/AJR.05.1368

    Article  PubMed  Google Scholar 

  93. Sun HY, Lee JM, Shin CI, Lee DH, Moon SK, Kim KW, Han JK, Choi BI (2010) Gadoxetic acid-enhanced magnetic resonance imaging for differentiating small hepatocellular carcinomas (< or =2 cm in diameter) from arterial enhancing pseudolesions: special emphasis on hepatobiliary phase imaging. Invest Radiol 45:96–103. https://doi.org/10.1097/RLI.0b013e3181c5faf7

    Article  CAS  Google Scholar 

  94. Motosugi U, Ichikawa T, Sou H, Sano K, Tominaga L, Muhi A, Araki T (2010) Distinguishing hypervascular pseudolesions of the liver from hypervascular hepatocellularcarcinomas with gadoxetic acid-enhanced MR imaging. Radiology 256:151–158. https://doi.org/10.1148/radiol.10091885

    Article  PubMed  Google Scholar 

  95. Ohtomo K, Baron RL, Dodd GD 3rd, Federle MP, Miller WJ, Campbell WL, Confer SR, Weber KM (1993) Confluent hepatic fibrosis in advanced cirrhosis: appearance at CT. Radiology 188(1):31–35. https://doi.org/10.1148/radiology.188.1.8511316

    Article  CAS  PubMed  Google Scholar 

  96. Kelekis NL, Makri E, Vassiou A, Patsiaoura K, Spiridakis M, Dalekos GN (2004) Confluent hepatic fibrosis as the presenting imaging sign in nonadvanced alcoholic cirrhosis. Clin Imaging 28(2):124–127. https://doi.org/10.1016/S0899-7071(03)00243-2

    Article  PubMed  Google Scholar 

  97. Décarie PO, Lepanto L, Billiard JS, Olivié D, Murphy-Lavallée J, Kauffmann C, Tang A (2011) Fatty liver deposition and sparing: a pictorial review. Insights Imaging 2(5):533–538. https://doi.org/10.1007/s13244-011-0112-5

    Article  PubMed  PubMed Central  Google Scholar 

  98. Hussain HK, Syed I, Nghiem HV, Johnson TD, Carlos RC, Weadock WJ, Francis IR (2004) T2-weighted MR imaging in the assessment of cirrhotic liver. Radiology 230(3):637–644. https://doi.org/10.1148/radiol.2303020921

    Article  PubMed  Google Scholar 

  99. Baron RL, Peterson MS (2001) From the RSNA refresher courses: screening the cirrhotic liver for hepatocellular carcinoma with CT and MR imaging: opportunities and pitfalls. Radiographics. Oct;21 Spec No:S117–S132. https://doi.org/10.1148/radiographics.21.suppl_1.g01oc14s117

  100. Ooi CG, Chan KL, Peh WC, Saing H, Ngan H (1999) Confluent hepatic fibrosis in monozygotic twins. Pediatr Radiol 29(1):53–55. https://doi.org/10.1007/s002470050534

    Article  CAS  PubMed  Google Scholar 

  101. Husarik DB, Gupta RT, Ringe KI, Boll DT, Merkle EM (2011) Contrast enhanced liver MRI in patients with primary sclerosing cholangitis: inverse appearance of focal confluent fibrosis on delayed phase MR images with hepatocyte specific versus extracellular gadolinium based contrast agents. Acad Radiol 18(12):1549–1554. https://doi.org/10.1016/j.acra.2011.08.007

    Article  PubMed  Google Scholar 

  102. Karam AR, Shankar S, Surapaneni P, Kim YH, Hussain S (2010) Focal nodular hyperplasia: central scar enhancement pattern using Gadoxetate Disodium. J Magn Reson Imaging 32(2):341–344. https://doi.org/10.1002/jmri.22262

    Article  PubMed  Google Scholar 

  103. Park YS, Lee CH, Kim BH, Lee J, Choi JW, Kim KA, Ahn JH, Park CM (2013) Using Gd-EOB-DTPA-enhanced 3-T MRI for the differentiation of infiltrative hepatocellular carcinoma and focal confluent fibrosis in liver cirrhosis. Magn Reson Imaging 31(7):1137–1142. https://doi.org/10.1016/j.mri.2013.01.011

    Article  CAS  PubMed  Google Scholar 

  104. Allard JP (2002) Other disease associations with non-alcoholic fatty liver disease (NAFLD). Best Pract Res Clin Gastroenterol 16(5):783–795. https://doi.org/10.1053/bega.2002.0330

    Article  PubMed  Google Scholar 

  105. Angulo P (2002) Nonalcoholic fatty liver disease. N Engl J Med 346(16):1221–1231. https://doi.org/10.1056/NEJMra011775

    Article  CAS  PubMed  Google Scholar 

  106. Clark JM, Diehl AM (2003) Nonalcoholic fatty liver disease: an underrecognized cause of cryptogenic cirrhosis. JAMA 289(22):3000–3004. https://doi.org/10.1001/jama.289.22.3000

    Article  PubMed  Google Scholar 

  107. Brunt EM, Tiniakos DG (2002) Pathology of steatohepatitis. Best Pract Res Clin Gastroenterol 16(5):691–707. https://doi.org/10.1053/bega.2002.0326

    Article  PubMed  Google Scholar 

  108. Matsui O, Kadoya M, Takahashi S, Yoshikawa J, Gabata T, Takashima T, Kitagawa K (1995) Focal sparing of segment IV in fatty livers shown by sonography and CT: correlation with aberrant gastric venous drainage. AJR Am J Roentgenol 164(5):1137–1140. https://doi.org/10.2214/ajr.164.5.7717220

    Article  CAS  PubMed  Google Scholar 

  109. Hamer OW, Aguirre DA, Casola G, Lavine JE, Woenckhaus M, Sirlin CB (2006) Fatty liver: imaging patterns and pitfalls. Radiographics 26(6):1637–1653. https://doi.org/10.1148/rg.266065004

    Article  PubMed  Google Scholar 

  110. Gabata T, Matsui O, Kadoya M, Ueda K, Kawamori Y, Yoshikawa J, Takashima T (1997) Aberrant gastric venous drainage in a focal spared area of segment IV in fatty liver: demonstration with color Doppler sonography. Radiology 203(2):461–463. https://doi.org/10.1148/radiology.203.2.9114105

    Article  CAS  PubMed  Google Scholar 

  111. Kawamori Y, Matsui O, Takahashi S, Kadoya M, Takashima T, Miyayama S (1996) Focal hepatic fatty infiltration in the posterior edge of the medial segment associated with aberrant gastric venous drainage: CT, US, and MR findings. J Comput Assist Tomogr 20(3):356–359. https://doi.org/10.1097/00004728-199605000-00004

    Article  CAS  PubMed  Google Scholar 

  112. Ledda RE, Milanese G, Cademartiri F, Maffei E, Benedetti G, Goldoni M, Silva M, Sverzellati N (2021) Association of hepatic steatosis with epicardial fat volume and coronary artery disease in symptomatic patients. Radiol Med 126(5):652–660. https://doi.org/10.1007/s11547-020-01321-9

    Article  PubMed  Google Scholar 

  113. Nicolau C, Brú C (2004) Focal liver lesions: evaluation with contrast-enhanced ultrasonography. Abdom Imaging 29(3):348–359. https://doi.org/10.1007/s00261-003-0117-8

    Article  CAS  PubMed  Google Scholar 

  114. Tom WW, Yeh BM, Cheng JC, Qayyum A, Joe B, Coakley FV (2004) Hepatic pseudotumor due to nodular fatty sparing: the diagnostic role of opposed-phase MRI. AJR Am J Roentgenol 183(3):721–724. https://doi.org/10.2214/ajr.183.3.1830721

    Article  PubMed  Google Scholar 

  115. Rinella ME, McCarthy R, Thakrar K, Finn JP, Rao SM, Koffron AJ, Abecassis M, Blei AT (2003) Dual-echo, chemical shift gradient-echo magnetic resonance imaging to quantify hepatic steatosis: Implications for living liver donation. Liver Transpl 9(8):851–856. https://doi.org/10.1053/jlts.2003.50153

    Article  PubMed  Google Scholar 

  116. Hamer OW, Aguirre DA, Casola G, Sirlin CB (2005) Imaging features of perivascular fatty infiltration of the liver: initial observations. Radiology 237(1):159–169. https://doi.org/10.1148/radiol.2371041580

    Article  PubMed  Google Scholar 

  117. Ozaki K, Harada K, Terayama N, Kosaka N, Kimura H, Gabata T (2020) FDG-PET/CT imaging findings of hepatic tumors and tumor-like lesions based on molecular background. Jpn J Radiol 38(8):697–718. https://doi.org/10.1007/s11604-020-00961-1

    Article  CAS  PubMed  Google Scholar 

  118. Tan GJ, Berlangieri SU, Lee ST, Scott AM (2014) FDG PET/CT in the liver: lesions mimicking malignancies. Abdom Imaging 39(1):187–195. https://doi.org/10.1007/s00261-013-0043-3

    Article  PubMed  Google Scholar 

  119. Lu RC, She B, Gao WT, Ji YH, Xu DD, Wang QS, Wang SB (2019) Positron-emission tomography for hepatocellular carcinoma: Current status and future prospects. World J Gastroenterol 25(32):4682–4695. https://doi.org/10.3748/wjg.v25.i32.4682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kong E, Chun KA, Cho IH (2017) Quantitative assessment of simultaneous F-18 FDG PET/MRI in patients with various types of hepatic tumors: Correlation between glucose metabolism and apparent diffusion coefficient. PLoS ONE 12(7):e0180184. https://doi.org/10.1371/journal.pone.0180184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Vogel A, Cervantes A, Chau I, Daniele B, Llovet JM, Meyer T, Nault JC, Neumann U, Ricke J, Sangro B, Schirmacher P, Verslype C, Zech CJ, Arnold D, Martinelli E (2018) ESMO Guidelines Committee. Hepatocellular carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 29(Suppl 4):iv238-iv255. https://doi.org/10.1093/annonc/mdy308. Erratum in: Ann Oncol. 2019 May 1;30(5):871–873. Erratum in: Ann Oncol. 2019 May;30(5):871–873

  122. Park S, Kim TS, Kang SH, Kim HB, Park JW, Kim SK (2018) 11C-acetate and 18F-fluorodeoxyglucose positron emission tomography/computed tomography dual imaging for the prediction of response and prognosis after transarterial chemoembolization. Medicine (Baltimore) 97(37):e12311. https://doi.org/10.1097/MD.0000000000012311

    Article  Google Scholar 

  123. Talbot JN, Fartoux L, Balogova S, Nataf V, Kerrou K, Gutman F, Huchet V, Ancel D, Grange JD, Rosmorduc O (2010) Detection of hepatocellular carcinoma with PET/CT: a prospective comparison of 18F-fluorocholine and 18F-FDG in patients with cirrhosis or chronic liver disease. J Nucl Med 51(11):1699–1706. https://doi.org/10.2967/jnumed.110.075507

    Article  PubMed  Google Scholar 

  124. Castilla-Lièvre MA, Franco D, Gervais P, Kuhnast B, Agostini H, Marthey L, Désarnaud S, Helal BO (2016) Diagnostic value of combining 11C-choline and 18F-FDG PET/CT in hepatocellular carcinoma. Eur J Nucl Med Mol Imaging 43(5):852–859. https://doi.org/10.1007/s00259-015-3241-0

    Article  CAS  PubMed  Google Scholar 

  125. Virgolini I, Ambrosini V, Bomanji JB, Baum RP, Fanti S, Gabriel M, Papathanasiou ND, Pepe G, Oyen W, De Cristoforo C, Chiti A (2010) Procedure guidelines for PET/CT tumour imaging with 68Ga-DOTA-conjugated peptides: 68Ga-DOTA-TOC, 68Ga-DOTA-NOC, 68Ga-DOTA-TATE. Eur J Nucl Med Mol Imaging 37(10):2004–2010. https://doi.org/10.1007/s00259-010-1512-3

    Article  PubMed  Google Scholar 

  126. Hirmas N, Leyh C, Sraieb M, Barbato F, Schaarschmidt BM, Umutlu L, Nader M, Wedemeyer H, Ferdinandus J, Rischpler C, Herrmann K, Costa PF, Lange CM, Weber M, Fendler WP (2021) 68Ga-PSMA-11 PET/CT improves tumor detection and impacts management in patients with hepatocellular carcinoma. J Nucl Med 62(9):1235–1241. https://doi.org/10.2967/jnumed.120.257915

    Article  CAS  PubMed  Google Scholar 

  127. Wang H, Zhu W, Ren S, Kong Y, Huang Q, Zhao J, Guan Y, Jia H, Chen J, Lu L, Xie F, Qin L (2021) 68Ga-FAPI-04 Versus 18F-FDG PET/CT in the Detection of Hepatocellular Carcinoma. Front Oncol 25(11):693640. https://doi.org/10.3389/fonc.2021.69364

    Article  Google Scholar 

  128. Hu HT, Shan QY, Chen SL et al (2020) CT-based radiomics for preoperative prediction of early recurrent hepatocellular carcinoma: technical reproducibility of acquisition and scanners. Radiol Med 125(8):697–705. https://doi.org/10.1007/s11547-020-01174-2

    Article  PubMed  Google Scholar 

  129. Grassi R, Miele V, Giovagnoni A (2019) Artificial intelligence: a challenge for third millennium radiologist. Radiol Med 124(4):241–242. https://doi.org/10.1007/s11547-019-00990-5

    Article  PubMed  Google Scholar 

  130. Hu HT, Shan QY, Chen SL, Li B, Feng ST, Xu EJ, Li X, Long JY, Xie XY, Lu MD, Kuang M, Shen JX, Wang W (2020) CT-based radiomics for preoperative prediction of early recurrent hepatocellular carcinoma: technical reproducibility of acquisition and scanners. Radiol Med 125(8):697–705. https://doi.org/10.1007/s11547-020-01174-2

    Article  PubMed  Google Scholar 

  131. Nakamura Y, Higaki T, Honda Y, Tatsugami F, Tani C, Fukumoto W, Narita K, Kondo S, Akagi M, Awai K (2021) Advanced CT techniques for assessing hepatocellular carcinoma. Radiol Med 126(7):925–935. https://doi.org/10.1007/s11547-021-01366-4

    Article  PubMed  Google Scholar 

  132. Wakabayashi T, Ouhmich F, Gonzalez-Cabrera C, Felli E, Saviano A, Agnus V, Savadjiev P, Baumert TF, Pessaux P, Marescaux J, Gallix B (2019) Radiomics in hepatocellular carcinoma: a quantitative review. Hepatol Int 13(5):546–559. https://doi.org/10.1007/s12072-019-09973-0

    Article  PubMed  Google Scholar 

  133. Sagir KA (2020) Radiomics in Hepatocellular Carcinoma. J Gastrointest Cancer 51(4):1165–1168. https://doi.org/10.1007/s12029-020-00493-x

    Article  Google Scholar 

  134. Ganne-Carrié N, Piscaglia F (2020) Non-enhanced MRI surveillance for HCC: A new tool for all, none or selected patients at risk? J Hepatol 72(4):607–609. https://doi.org/10.1016/j.jhep.2020.01.006

    Article  PubMed  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Renzulli.

Ethics declarations

Conflict of interest

No conflicts of interest to declare.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Renzulli, M., Brandi, N., Argalia, G. et al. Morphological, dynamic and functional characteristics of liver pseudolesions and benign lesions. Radiol med 127, 129–144 (2022). https://doi.org/10.1007/s11547-022-01449-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-022-01449-w

Keywords

Navigation