Skip to main content
Log in

CMR in the diagnosis of ischemic heart disease

  • Cardiac radiology
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Cardiovascular magnetic resonance has always been more often used in the last 10 years in evaluation of heart disease. Role in diagnosis of ischemia and in evaluation of myocardial infarction is well established by many scientific papers and included in current guidelines. High accuracy in evaluation of stress-induced ischemia, tissue characterization and functional parameters are the pillars the make the method widely used. In this paper are described role and techniques in diagnosis of ischemia, myocardial infarction and its sequelae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Di Cesare E, Cademartiri F, Carbone I et al (2013) Clinical indications for the use of cardiac MRI. By the SIRM study Group on Cardiac Imaging. Radiol Med 118(5):752–798. https://doi.org/10.1007/s11547-012-0899-2

    Article  Google Scholar 

  2. Francone M, Di Cesare E, Cademartini F et al (2014) Italian Registry of cardiac magnetic resonance. Eur J Radiol 83(1):e15–e22. https://doi.org/10.1016/j.ejrad.2013.10.006

    Article  Google Scholar 

  3. Thygesen K, Alpert JS, Jaffe AS, Chaitman BR, Bax JJ, Morrow DA, White HD (2019) ESC Scientific Document Group. Fourth universal definition of myocardial infarction. Eur Heart J 40:237–269

    Google Scholar 

  4. Sarkisian L, Saaby L, Poulsen TS, Gerke O, Jangaard N, Hosbond S, Diederichsen ACP, Thygesen K, Mickley H (2016) Clinical characteristics and outcomes of patients with myocardial infarction, myocardial injury, and nonelevated troponins. Am J Med 129:446e.5–446e.21

    Google Scholar 

  5. Sarkisian L, Saaby L, Poulsen TS, Gerke O, Hosbond S, Jangaard N, Diederichsen ACP, Thygesen K, Mickley H (2016) Prognostic impact of myocardial injury related to various cardiac and noncardiac conditions. Am J Med 129:506–514

    Google Scholar 

  6. Ooi DS, Isotalo PA, Veinot JP (2000) Correlation of antemortem serum creatine kinase, creatine kinase-MB, troponin I, and troponin T with cardiac pathology. Clin Chem 46:338–344

    CAS  Google Scholar 

  7. Secchi F, Ali M, Petrini M et al (2018) Blood-threshold CMR volume analysis of functional univentricular heart. Radiol Med 123:331–337. https://doi.org/10.1007/s11547-017-0851-6

    Article  Google Scholar 

  8. Burns RJ, Gibbons RJ, Yi Q, Roberts RS, Miller TD, Schaer GL, Anderson JL, Yusuf S (2002) The relationships of left ventricular ejection fraction, end-systolic volume index and infarct size to six-month mortality after hospital discharge following myocardial infarction treated by thrombolysis. J Am Coll Cardiol 39:30–36

    Google Scholar 

  9. El Aidi H, Adams A, Moons KG, Den Ruijter HM, Mali WP, Doevendans PA, Nagel E, Schalla S, Bots ML, Leiner T (2014) Cardiac magnetic resonance imaging findings and the risk of cardiovascular events in patients with recent myocardial infarction or suspected or known coronary artery disease: a systematic review of prognostic studies. J Am Coll Cardiol 63:1031–1045

    Google Scholar 

  10. Reindl M, Tiller C, Holzknecht M, Lechner I, Beck A, Plappert D, Gorzala M, Pamminger M, Mayr A, Klug G et al (2019) Prognostic implications of global longitudinal strain by feature-tracking cardiac magnetic resonance in ST-elevation myocardial infarction. Circ Cardiovasc Imaging 12:e009404

    Google Scholar 

  11. Ibanez B, Aletras AH, Arai AE, Arheden H, Bax J, Berry C, Bucciarelli-Ducci C, Croisille P, Dall’Armellina E, Dharmakumar R et al (2019) Cardiac MRI endpoints in myocardial infarction experimental and clinical trials: JACC Scientific Expert Panel. J Am Coll Cardiol 74:238–256

    Google Scholar 

  12. Nordlund D, Kanski M, Jablonowski Koul S, Erlinge Carlsson M, Engblom H, Aletras AH, Arheden H (2017) Experimental validation of contrast-enhanced SSFP cine CMR for quantification of myocardium at risk in acute myocardial infarction. J Cardiovasc Magn Reson 19:12

    Google Scholar 

  13. Niccoli G, Montone RA, Ibanez B, Thiele H, Crea F, Heusch G, Bulluck H, Hausenloy DJ, Berry C, Stiermaier T et al (2019) Optimized treatment of ST-elevation myocardial infarction. Circ Res 125:245–258

    CAS  Google Scholar 

  14. Hamirani YS, Wong A, Kramer CM, Salerno M (2014) Effect of microvascular obstruction and intramyocardial hemorrhage by CMR on LV remodeling and outcomes after myocardial infarction: a systematic review and meta-analysis. JACC Cardiovasc Imaging 7:940–952

    Google Scholar 

  15. Galea N, Dacquino GM, Ammendola RM, Coco S, Agati L, De Luca L, Carbone I, Fedele F, Catalano C, Francone M (2019) Microvascular obstruction extent predicts major adverse cardiovascular events in patients with acute myocardial infarction and preserved ejection fraction. Eur Radiol 29:2369–2377

    Google Scholar 

  16. DeWaha S, Patel MR, Granger CB, Ohman EM, Maehara A, Eitel I, Ben-Yehuda O, Jenkins P, Thiele H, Stone GW (2017) Relationship between microvascular obstruction and adverse events following primary percutaneous coronary intervention for ST-segment elevation myocardial infarction: an individual patient data pooled analysis from seven randomized trials. Eur Heart J 38:3502–3510

    CAS  Google Scholar 

  17. Messroghli DR, Niendorf T, Schulz-Menger J, Dietz R, Friedrich MG (2003) T1 mapping in patients with acute myocardial infarction. J Cardiovasc Magn Reson 5:353–359. https://doi.org/10.1081/jcmr-120019418

    Article  Google Scholar 

  18. Ici DO, Jeuthe S, Al-Wakeel N, Berger F, Kuehne T, Kozerke S, Messroghli DR (2014) T1 mapping in ischaemic heart disease. Eur Heart J Cardiovasc Imaging 15:597–602

    Google Scholar 

  19. Tessa C, Del Meglio J, Lilli A et al (2018) T1 and T2 mapping in the identification of acute myocardial injury in patients with NSTEMI. Radiol Med 123:926–934. https://doi.org/10.1007/s11547-018-0931-2

    Article  Google Scholar 

  20. Carrick D, Haig C, Rauhalammi S, Ahmed N, Mordi I, McEntegart M, Petrie MC, Eteiba H, Hood S, Watkins S et al (2016) Prognostic significance of infarct core pathology revealed by quantitative non-contrast in comparison with contrast cardiac magnetic resonance imaging in reperfused ST-elevation myocardial infarction survivors. Eur Heart J 37:1044–1059

    Google Scholar 

  21. Nakamori S, Alakbarli J, Bellm S, Motiwala SR, Addae G, Manning WJ, Nezafat R (2017) Native T1 value in the remote myocardium is independently associated with left ventricular dysfunction in patients with prior myocardial infarction. J Magn Reson Imaging 46:1073–1081

    Google Scholar 

  22. Biesbroek PS, Amier RP, Teunissen PFA, Hofman MBM, Robbers L, van de Ven PM, Beek AM, van Rossum AC, van Royen N, Nijveldt R et al (2017) Changes in remote myocardial tissue after acute myocardial infarction and its relation to cardiac remodeling: a CMR T1 mapping study. PLoS ONE 12:e0180115

    Google Scholar 

  23. Chan W, Duffy SJ, White DA, Gao XM, Du XJ, Ellims AH, Dart AM, Taylor AJ (2012) Acute left ventricular remodeling following myocardial infarction: coupling of regional healing with remote extracellular matrix expansion. JACC Cardiovasc Imaging 5:884–893

    Google Scholar 

  24. Rochitte CE, Lima JAC, Bluemke DA, Reeder SB, McVeigh ER, Furuta T, Becker LC, Melin JA (1998) Magnitude and time course of microvascular obstruction and tissue injury after acute myocardial infarction. Circulation 10:1006–1101

    Google Scholar 

  25. Reffelmann T, Kloner RA (2006) The no-reflow phenomenon: a basic mechanism of myocardial ischemia and reperfusion. Basic Res Cardiol 101:359–372

    Google Scholar 

  26. Reinstadler SJ, Stiermaier T, Reindl M, Feistritzer HJ, Fuernau G, Eitel C, Desch S, Klug G, Thiele H, Metzler B (2019) Intramyocardial haemorrhage and prognosis after ST-elevation myocardial infarction. Eur Heart J Cardiovasc Imaging 20:138–146

    Google Scholar 

  27. Stiermaier T, Jobs A, deWaha S, Fuernau G, Poss J, Desch S, Thiele H, Eitel I (2017) Optimized prognosis assessment in ST-segment-elevation myocardial infarction using a cardiac magnetic resonance imaging risk score. Circ Cardiovasc Imaging 10:e006774

    Google Scholar 

  28. Pontone G, Guaricci AI, Andreini D, Ferro G, Guglielmo M et al (2017) Prognostic stratification of patients with ST-segment-elevation myocardial infarction (PROSPECT): a cardiac magnetic resonance study. Circ Cardiovasc Imaging 10(11):e006428

    Google Scholar 

  29. Schuster A, Backhaus SJ, Stiermaier T, Navarra JL, Uhlig J, Rommel KP, Koschalka A, Kowallick JT, Lotz J, Gutberlet M et al (2019) Left atrial function with MRI enables prediction of cardiovascular events after myocardial infarction: insights from the AIDA STEMI and TATORT NSTEMI trials. Radiology 293:292–302

    Google Scholar 

  30. Albaeni A, Chatila K, Beydoun HA, Beydoun MA, Morsy M, Khalife WI (2020) In-hospital left ventricular thrombus following ST-elevation myocardial infarction. Int J Cardiol 299:1–6

    Google Scholar 

  31. Jobs A, Eitel C, Poss J, Desch S, Thiele H, Eitel I (2015) Effect of pericardial effusion complicating ST-elevation myocardial infarction as predictor of extensive myocardial damageand prognosis. Am J Cardiol 116:1010–1016

    Google Scholar 

  32. Grothoff M, Elpert C, Hoffmann J, Zachrau J, Lehmkuhl L, de Waha S, Desch S, Eitel I, Mende M, Thiele H, Gutberlet M (2012) Right ventricular injury in st-elevation myocardial infarction: Risk stratification by visualization of wall motion, edema, and delayed-enhancement cardiac magnetic resonance. Circul Cardiovasc Imaging 5:60–68

    Google Scholar 

  33. Medina de Chazal H, Del Buono MG, Keyser-Marcus L, Ma L, Moeller FG, Berrocal D, Abbate A (2018) Stress cardiomyopathy diagnosis and treatment: JACC state-of-the-art review. J Am Coll Cardiol 72(16):1955–1971

    Google Scholar 

  34. Tornvall P, Gerbaud E, Behaghel A et al (2015) Myocarditis or “true” infarction by cardiac magnetic resonance in patients with a clinical diagnosis of myocardial infarction without obstructive coronary disease: a meta-analysis of individual patient data. Atherosclerosis 241(1):87–91

    CAS  Google Scholar 

  35. West AM, Kramer CM (2010) Cardiovascular magnetic resonance imaging of myocardial infarction, viability, and cardiomyopathies. Curr Probl Cardiol 35(4):176–220

    Google Scholar 

  36. Rajiah P, Desai MY, Kwon D, Flamm SD (2013) MR imaging of myocardial infarction. RadioGraphics 33:1383–1412

    Google Scholar 

  37. Yang Y, Li W, Zhu H, PanX HuY, Arnott C, Mai W, Cai X, Huang Y (2020) Prognosis of unrecognised myocardial infarction determined by electrocardiography or cardiac magnetic resonance imaging: systematic review and meta-analysis. BMJ. https://doi.org/10.1136/bmj.m1184

    Article  Google Scholar 

  38. Zhang N, Yang G, Gao Z, Xu C, Zhang Y, Shi R, Keegan J, Xu L, Zhang H, Fan Z, Firmin D (2019) Deep learning for diagnosis of chronic myocardial infarction on nonenhanced cardiac Cine MRI. Radiology 291:606–617

    Google Scholar 

  39. Knuuti J, Wins W, Saraste A et al (2020) ESC Guidelines for the diagnosis and management of chronic coronary syndromes. The Task Force for the diagnosis and management of chronic coronary syndromes of the European Society of Cardiology (ESC). Eur Heart J 41:407–477

    Google Scholar 

  40. Thom H, West NE, Hughes V et al (2014) Cost-effectiveness of initial cardiovascular MR, stress SPECT or stress echocardiography as a gate-keeper test, compared with upfront invasive coronary angiography in the investigation and management of patients with stable chest pain:midterm oucomes from the CECat randomised trial. BMJ Open. https://doi.org/10.1136/bmjopen-2013-003419

    Article  Google Scholar 

  41. Camici PG, Crea F (2007) Coronary microvascular dysfunction. N Engl J Med 356:830–840

    CAS  Google Scholar 

  42. Gould KI, Lipscomb H (1974) Effects of coronary stenoses on coronary flow reserve and resistance. Am J Cardiol 34:48–55

    CAS  Google Scholar 

  43. Kramer CM, Barkhausen J, Bucciarelli-Ducci C, Flamm SD, Kim RJ, Nagel E (2013) Standardized cardiovascular magnetic resonance imaging (CMR) protocols: 2020 update. JCVMR 22:17. https://doi.org/10.1186/s12968-020-00607-1

    Article  Google Scholar 

  44. Marano R, Natale L, Chiribiri A, Pirro F et al (2015) Cardic MR perfusion imaging: where we are. Radiol Med 120:190–206

    Google Scholar 

  45. Shehata ML, Basha T, Hayeri D, Harttung D et al (2014) MR myocardial perfusion imaging: insights on techniques, analysis, interpretation and findings. Radiographics 34:1636–1657

    Google Scholar 

  46. Khoo JP, Grundy BJ, Steadman CD et al (2012) Stress cardiovascular MR in routine clinical practise: referral patterns, accuracy, tolerance, safety and incidental findings. Br J Radiol 85:851–857

    Google Scholar 

  47. Karamitsos TD, Jayanth R, Tammy A, Pegg A et al (2009) Tolerance and safety of adenosine stress perfusion cardiovascular magnetic resonance imaging in patients with severe coronary artery disease. Int J Cardiovasc Imaging 25:277–283. https://doi.org/10.1007/s10554-008-9392-3

    Article  Google Scholar 

  48. Lee SD, Huang WC, Peng NJ, Hu C (2017) Dipyridamole-induced adverse effects in myocardial perfusion scans: dynamic evaluation. Int J Cardiol Heart Vasc. 14:14–19. https://doi.org/10.1016/j.ijcha.2016.11.002

    Article  Google Scholar 

  49. Pellikka PA, Arruda-Olson A, Chaudhry FA et al (2019) Guidelines for performance, interpretation, and application of stress echocardiography in Ischemic Heart Disease: from the American Society of Echocardiography. J Am Soc Echocardiogr 33(1):1–41. https://doi.org/10.1016/j.echo.2019.07.001

    Article  Google Scholar 

  50. Manisty C, Ripley DP, Herrey AS et al (2015) Splenic switch-off: a tool to assess stress adeguacy in adenonosine perfusion cardiac MR imaging. Radiology 276:732–740

    Google Scholar 

  51. Di Bella EVR, Parker DL, Sinusas AJ (2005) On the dark rim artifact in dynamic contrast-enhanced MRI myocardial perfusion studies. Magn Reason Med 54:1295–1299

    Google Scholar 

  52. Hamon M, Fau G, Nee G et al (2010) Meta-analysis of the diagnostic performance of stress cardiac magnetic resonance imaging for detection of coronary artery disease. J Cardiovasc Magn Reson 12:29

    Google Scholar 

  53. De Jong MC, Genders TSS, van Geuns et al (2012) Diagnostic performance of stress myocardiale perfusion imaging for coronary artery disease: a systematic review and meta-analisys. Eur Radiol 22:1881–1895

    Google Scholar 

  54. Jaarsma C, Leiner T, Bekkers SC et al (2012) Diagnostic performance of noninvasive myocardial perfusion imaging using single-photon emission computed tomography, cardiac magnetic resonance, and positron emission tomography imaging for the detection of obstructive coronary artery disease a meta-analysis. JACC 59:1719–1728

    Google Scholar 

  55. Schwitter J, Wacker CM, Wilke N et al (2012) Superior diagnostic performance of perfusion-cardiovascular magnetic resonance versus SPECT to detect coronary artery disease: The secondary endpoints of multicenter multivendor MR-IMPACT II (Magnetic Resonance Imaging for Myocardial Perfusion Assessment in Coronary artery disease Trial). J Cardiovasc Magn Reason 14:61

    Google Scholar 

  56. Greenwood JP, Maredia N, Younger JF et al (2012) Cardiovascular magnetic resonance and single-photon emission computed tomography for diagnosis of coronary heart disease (CE-MARC): a prospective trial. Lancet 379:453–460

    Google Scholar 

  57. Chung SY, Lee KY, Chun EJ et al (2010) Comparison of stress perfusione MRI and SPECT for detection of myocardial ischemia in patients with angiographically proven three-vessel coronary artery disease. AJR 195:356362

    Google Scholar 

  58. Montalescot G, Sechtem V, Achenbach S et al (2013) ESC guidelines on the management of stable coronary artery disease The Task Force on the management of stable coronary artery disease of the European Society of Cardiology. Eur Heart J 34:2949–3003

    Google Scholar 

  59. Nandalur KR, Dwamena BA, Choudhri AF, Nandalur MR, Carlos RC (2007) Diagnostic performance of stress cardiac magnetic resonance in the detection of coronary artery disease; a meta-analisys. J Am Coll Cardiol 50:1343–1353

    Google Scholar 

  60. Greenwood JP, Ripley DP, Berry C et al (2016) Effect of care guided by cardiovascular magnetic resonance, myocardial perfusion scintigraphy, or NICE guidelines on subsequent unnecessary angiography rates. The CE-MARC 2 randomized clinical trial. JAMA 316(10):1051–1060. https://doi.org/10.1001/jama.2016.12680

    Article  Google Scholar 

  61. Nagel E, Greenwood JP, McCann GP, for the MR-INFORM investigators et al (2019) Magnetic resonance perfusion or fractional flow reserve in coronary disease. N Engl J Med 380:2418–2428. https://doi.org/10.1056/nejmoa1716734

    Article  Google Scholar 

  62. Lipinski MJ, McVey CM, Berger JS, Kramer CM, Salerno M (2013) Prognostic value of stress cardiac magnetic resonance imaging in patients with known or suspected coronary artery disease: a systematic review and meta-analysis. J Am Coll Cardiol 62(9):826–838. https://doi.org/10.1016/j.jacc.2013.03.080

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitaliano Buffa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buffa, V., Di Renzi, P. CMR in the diagnosis of ischemic heart disease. Radiol med 125, 1114–1123 (2020). https://doi.org/10.1007/s11547-020-01278-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-020-01278-9

Keywords

Navigation