Skip to main content

Advertisement

Log in

Post-mortem computed tomography (PMCT) radiological findings and assessment in advanced decomposed bodies

  • COMPUTED TOMOGRAPHY
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Purpose

The aim of the study is to report radiological findings and features in advanced decomposed bodies obtained by post-mortem computed tomography (PMCT) with autopsy correlation.

Materials and methods

This retrospective descriptive multicentric study included 41 forensic cases examined between May 2013 and November 2016. All the bodies were PMCT-scanned prior to autopsy, and internal putrefactive state was determined using the radiological alteration index (RAI) by a radiologist with expertise in forensic radiology and a forensic pathologist trained in forensic imaging. After PMCT scans, grade of external putrefaction (GEP) was assigned during the external examination and the complete autopsy was performed by forensic pathologists.

Results

The PMCT images evaluation revealed that the RAI index was > 61 in all bodies, corresponding to a moderate-massive presence of putrefactive gas. The gas grade was > II in correspondence of the major vessels, heart cavities, liver parenchyma, vertebra L3 and subcutaneous pectoral tissues, and varied from I to III in correspondence of the kidney. Cadaveric external examination revealed the presence of advanced transformative phenomena, with a GEP3 and GEP4 in most of the cases, with body swelling, eyes and tongue protrusion, body fluids expulsion and fat liquefaction.

Conclusion

Radiological imaging by PMCT as an adjunct to autopsy in advanced decomposed bodies represents a useful tool in detecting post-mortem gas, even in very small amounts. A correct interpretation process of the PMCT data is essential to avoid images pitfalls, due to natural decomposition that can be mistaken for pathologic processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lichtenstein JE (1996) Forensic radiology. In: Gagliardi RA, McClennan BL (eds) A history of the radiological sciences diagnosis. CRC Press, Boca Raton, pp 579–605

    Google Scholar 

  2. Bolliger SA, Thali MJ (2015) Imaging and virtual autopsy: looking back and forward. Philos Trans R Soc Lond B Biol Sci. https://doi.org/10.1098/rstb.2014.0253

    Article  PubMed  PubMed Central  Google Scholar 

  3. La Russa R, Catalano C, Di Sanzo M, Scopetti M, Gatto V, Santurro A, Viola RV, Panebianco V, Frati P, Fineschi V (2019) Postmortem computed tomography angiography (PMCTA) and traditional autopsy in cases of sudden cardiac death due to coronary artery disease: a systematic review and meta-analysis. La radiologia medica 124(2):109–117

    Article  Google Scholar 

  4. De Marco E, Vacchiano G, Frati P, La Russa R, Santurro A, Scopetti M, Guglielmi G, Fineschi V (2018) Evolution of post-mortem coronary imaging: from selective coronary arteriography to post-mortem CT-angiography and beyond. La radiologia medica 123(5):351–358

    Article  Google Scholar 

  5. Dirnhofer R, Jackowski C, Vock P, Potter K, Thali MJ (2006) VIRTOPSY: minimally invasive, imaging-guided virtual autopsy. Radiographics 26:1305–1333. https://doi.org/10.1148/rg.265065001

    Article  PubMed  Google Scholar 

  6. Lundström C, Persson A, Ross S, Ljung P, Lindholm S, Gyllensvärd F, Ynnerman A (2012) State-of-the-art of visualization in post-mortem imaging. APMIS 120:316–326. https://doi.org/10.1111/j.1600-0463.2011.02857.x

    Article  PubMed  Google Scholar 

  7. Krentz BV, Alamo L, Grimm J, Dédouit F, Bruguier C, Chevallier C, Egger C, Da Silva LFF, Grabherr S (2016) Performance of post-mortem CT compared to autopsy in children. Int J Legal Med 130:1089–1099. https://doi.org/10.1007/s00414-016-1370-z

    Article  PubMed  Google Scholar 

  8. Grabherr S, Grimm JM, Heinemann A (2016) Atlas of postmortem angiography. Springer, London

    Book  Google Scholar 

  9. Ishida M, Gonoi W, Okuma H, Shirota G, Shintani Y, Abe H, Takazawa Y, Fukayama M, Ohtomo K (2015) Common postmortem computed tomography findings following atraumatic death: differentiation between normal postmortem changes and pathologic lesions. Korean J Radiol 16:798–809. https://doi.org/10.3348/kjr.2015.16.4.798

    Article  PubMed  PubMed Central  Google Scholar 

  10. Silva RF, Botelho TL, Prado FB, Kawagushi JT, Daruge Júnior E, Bérzin F (2011) Human identification based on cranial computed tomography scan: a case report. Dentomaxillofac Radiol 40:257–261. https://doi.org/10.1259/dmfr/96080236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Busardò FP, Frati P, Santurro A, Zaami S, Fineschi V (2015) Errors and malpractice lawsuits in radiology: what the radiologist needs to know. Radiol Med 120:779–784. https://doi.org/10.1007/s11547-015-0561-x

    Article  PubMed  Google Scholar 

  12. Grabherr S, Heinemann A, Vogel H, Rutty G, Morgan B, Woźniak K, Dedouit F, Fischer F, Lochner S, Wittig H, Guglielmi G, Eplinius F, Michaud K, Palmiere C, Chevallier C, Mangin P, Grimm JM (2018) Postmortem CT angiography compared with autopsy: a forensic multicenter study. Radiology 288:270–276. https://doi.org/10.1148/radiol.2018170559

    Article  PubMed  PubMed Central  Google Scholar 

  13. Coty JB, Nedelcu C, Yahya S, Dupont V, Rougé-Maillart C, Verschoore M, Ridereau Zins C, Aubé C (2018) Burned bodies: post-mortem computed tomography, an essential tool for modern forensic medicine. Insights Imaging 9:731–743. https://doi.org/10.1007/s13244-018-0633-2

    Article  PubMed  PubMed Central  Google Scholar 

  14. Le Blanc-Louvry I, Thureau S, Duval C, Papin-Lefebvre F, Thiebot J, Dacher JN, Gricourt C, Touré E, Proust B (2013) Post-mortem computed tomography compared to forensic autopsy findings: a French experience. Eur Radiol 23:1829–1835. https://doi.org/10.1007/s00330-013-2779-0

    Article  PubMed  Google Scholar 

  15. Pinheiro J (2006) Decay process of a cadaver. In: Schmitt A, Cunha E, Pinheiro J (eds) Forensic anthropology and medicine. Complementary Sciences from Recovery to Cause of Death. Humana Press Inc, Totowa, pp 85–116

    Google Scholar 

  16. Zech WD, Jackowski C, Buetikofer Y, Kara L (2014) Characterization and differentiation of body fluids, putrefaction fluid, and blood using Hounsfield unit in postmortem CT. Int J Legal Med 128:795–802. https://doi.org/10.1007/s00414-014-1030-0

    Article  PubMed  Google Scholar 

  17. Byard RW, Tsokos M (2013) The challenges presented by decomposition. Forensic Sci Med Pathol 9:135–137. https://doi.org/10.1007/s12024-012-9386-2

    Article  PubMed  Google Scholar 

  18. Tschui J, Jackowski C, Schwendener N, Schyma C, Zech WD (2016) Post-mortem CT and MR brain imaging of putrefied corpses. Int J Legal Med 130:1061–1068. https://doi.org/10.1007/s00414-016-1385-5

    Article  CAS  PubMed  Google Scholar 

  19. Levy AD, Harcke HT, Mallak CT (2010) Postmortem imaging: MDCT features of postmortem change and decomposition. Am J Forensic Med Pathol 31:12–17. https://doi.org/10.1097/PAF.0b013e3181c65e1a

    Article  PubMed  Google Scholar 

  20. Singh MK, O’Donnell C, Woodford NW (2009) Progressive gas formation in a deceased person during mortuary storage demonstrated on computed tomography. Forensic Sci Med Pathol 5:236–242. https://doi.org/10.1007/s12024-009-9103-y

    Article  PubMed  Google Scholar 

  21. Thali MJ, Yen K, Schweitzer W, Vock P, Ozdoba C, Dirnhofer R (2003) Into the decomposed body-forensic digital autopsy using multislice-computed tomography. Forensic Sci Int 134:109–114

    Article  CAS  Google Scholar 

  22. Egger C, Bize P, Vaucher P, Mosimann P, Schneider B, Dominguez A, Meuli R, Mangin P, Grabherr S (2012) Distribution of artifactual gas on post-mortem multidetector computed tomography (MDCT). Int J Legal Med 126:3–12. https://doi.org/10.1007/s00414-010-0542-5

    Article  PubMed  Google Scholar 

  23. Gebhart FT, Brogdon BG, Zech WD, Thali MJ, Germerott T (2012) Gas at postmortem computed tomography—an evaluation of 73 non-putrefied trauma and non-trauma cases. Forensic Sci Int 222:162–169. https://doi.org/10.1016/j.forsciint.2012.05.020

    Article  PubMed  Google Scholar 

  24. Ishida M, Gonoi W, Hagiwara K, Takazawa Y, Akahane M, Fukayama M, Ohtomo K (2011) Intravascular gas distribution in the upper abdomen of non-traumatic in-hospital death cases on postmortem computed tomography. Leg Med 13:174–179. https://doi.org/10.1016/j.legalmed.2011.03.002

    Article  Google Scholar 

  25. Varlet V, Smith F, Giuliani N, Egger C, Rinaldi A, Dominguez A, Chevallier C, Bruguier C, Augsburger M, Mangin P, Grabherr S (2015) When gas analysis assists with postmortem imaging to diagnose causes of death. Forensic Sci Int 251:1–10. https://doi.org/10.1016/j.forsciint.2015.03.010

    Article  CAS  PubMed  Google Scholar 

  26. Morgan B, Adlam D, Robinson C, Pakkal M, Rutty GN (2014) Adult post-mortem imaging in traumatic and cardiorespiratory death and its relation to clinical radiological imaging. Br J Radiol 87:20130662. https://doi.org/10.1259/bjr.20130662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Offiah CE, Dean J (2016) Post-mortem CT and MRI: appropriate post-mortem imaging appearances and changes related to cardiopulmonary resuscitation. Br J Radiol 89:20150851. https://doi.org/10.1259/bjr.20150851

    Article  PubMed  Google Scholar 

  28. Charlier P, Carlier R, Roffi F, Ezra J, Chaillot PF, Duchat F, Huynh-Charlier I, Lorin de la Grandmaison G (2012) Postmortem abdominal CT: assessing normal cadaveric modifications and pathological processes. Eur J Radiol 81:639–647. https://doi.org/10.1016/j.ejrad.2011.01.054

    Article  CAS  PubMed  Google Scholar 

  29. Wagensveld IM, Blokker BM, Wielopolski PA, Renken NS, Krestin GP, Hunink MG, Oosterhuis JW, Weustink AC (2017) Total-body CT and MR features of postmortem change in in-hospital deaths. PLoS ONE 12:e0185115. https://doi.org/10.1371/journal.pone.0185115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Egger C, Vaucher P, Doenz F, Palmiere C, Mangin P, Grabherr S (2012) Development and validation of a postmortem radiological alteration index: the RA-Index. Int J Legal Med 126:559–566. https://doi.org/10.1007/s00414-012-0686-6

    Article  CAS  PubMed  Google Scholar 

  31. Maujean G, Vacher P, Bagur J, Guinet T, Malicier D (2016) Forensic autopsy of human decomposed bodies as a valuable tool for prevention: a French Regional Study. Am J Forensic Med Pathol 37:270–274. https://doi.org/10.1097/PAF.0000000000000266

    Article  PubMed  Google Scholar 

  32. Sakata M, Miki A, Kazama H, Morita M, Yasoshima S (1980) Studies on the composition of gases in the post-mortem body: animal experiments and two autopsy cases. Forensic Sci Int 15:19–29

    Article  CAS  Google Scholar 

  33. Hwang SL, Lieu AS, Lin CL, Liu GC, Howng SL, Kuo TH (2005) Massive cerebral air embolism after cardiopulmonary resuscitation. J Clin Neurosci 12:468–469

    Article  Google Scholar 

  34. Shiotani S, Ueno Y, Atake S, Kohno M, Suzuki M, Kikuchi K, Hayakawa H (2010) Nontraumatic postmortem computed tomographic demonstration of cerebral gas embolism following cardiopulmonary resuscitation. Jpn J Radiol 28:1–7. https://doi.org/10.1007/s11604-009-0372-x

    Article  PubMed  Google Scholar 

  35. Shiotani S, Kohno M, Ohashi N, Atake S, Yamazaki K, Nakayama H (2005) Cardiovascular gas on non-traumatic postmortem computed tomography (PMCT): the influence of cardiopulmonary resuscitation. Radiat Med 23:225–229

    PubMed  Google Scholar 

  36. Wilson AJ (1999) Gunshot injuries: what does a radiologist need to know? Radiographics 19:1358–1368

    Article  CAS  Google Scholar 

  37. Pomara C, Fineschi V, Scalzo G, Guglielmi G (2009) Virtopsy versus digital autopsy: virtual autopsy. Radiol Med 114:1367–1382. https://doi.org/10.1007/s11547-009-0435-1

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vittorio Fineschi.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The processing of the data reported in this paper is covered by the general authorization to process personal data for scientific research purposes granted by the Italian Data Protection Authority (1 March 2012 as published in Italy’s Official Journal No. 72 dated 26 March 2012) since the data do not entail any significant personalized impact on data subjects. Our study does not involve the application of experimental protocols; therefore, it does not require approval by an institutional and/or licensing committee. In all cases, local prosecutors opened an investigation, ordering that an autopsy be performed to clarify the exact cause of death.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cartocci, G., Santurro, A., Neri, M. et al. Post-mortem computed tomography (PMCT) radiological findings and assessment in advanced decomposed bodies. Radiol med 124, 1018–1027 (2019). https://doi.org/10.1007/s11547-019-01052-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-019-01052-6

Keywords

Navigation