Skip to main content
Log in

New advances in MRI diagnosis of degenerative osteoarthropathy of the peripheral joints

  • MAGNETIC RESONANCE IMAGING
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Degenerative osteoarthropathy is one of the leading causes of the pain and disability from musculoskeletal disease in the adult population. Magnetic resonance imaging (MRI) allows optimal visualization of all tissues involved in degenerative osteoarthritis disease process, mainly the articular cartilage. In addition to qualitative and semiquantitative morphologic assessment, several MRI-based advanced techniques have been developed to allow characterization and quantification of the biochemical cartilage composition. These include quantitative analysis and several compositional techniques (T1 and T2 relaxometry measurements and mapping, sodium imaging, delayed gadolinium-enhanced MRI of cartilage dGEMRIC, glycosaminoglycan-specific chemical exchange saturation transfer gagCEST, diffusion-weighted imaging DWI and diffusion tensor imaging DTI). These compositional MRI techniques may have the potential to serve as quantitative, reproducible, noninvasive and objective endpoints for OA assessment, particularly in diagnosis of early and pre-radiographic stages of the disease and in monitoring disease progression and treatment effects over time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bruno F, Smaldone F, Varrassi M et al (2017) MRI findings in lumbar spine following O2–O3 chemiodiscolysis: a long-term follow-up. Interv Neuroradiol. https://doi.org/10.1177/1591019917703784

    Article  PubMed  PubMed Central  Google Scholar 

  2. Barile A, Arrigoni F, Bruno F et al (2017) Computed tomography and MR imaging in rheumatoid arthritis. Radiol Clin North Am. https://doi.org/10.1016/j.rcl.2017.04.006

    Article  PubMed  Google Scholar 

  3. Bruno F, Barile A, Arrigoni F et al (2018) Weight-bearing MRI of the knee: a review of advantages and limits. Acta Biomed. https://doi.org/10.23750/abm.v89i1-s.7011

    Article  PubMed  PubMed Central  Google Scholar 

  4. Carotti M, Salaffi F, DiCarlo M, Giovagnoni A (2017) Relationship between magnetic resonance imaging findings, radiological grading, psychological distress and pain in patients with symptomatic knee osteoarthritis. Radiol Medica. https://doi.org/10.1007/s11547-017-0799-6

    Article  Google Scholar 

  5. Roemer FW, Crema MD, Trattnig S, Guermazi A (2011) Advances in imaging of osteoarthritis and cartilage. Radiology 260:332–354. https://doi.org/10.1148/radiol.11101359

    Article  PubMed  Google Scholar 

  6. Reginelli A, Zappia M, Barile A, Brunese L (2017) Strategies of imaging after orthopedic surgery. Musculoskelet Surg. https://doi.org/10.1007/s12306-017-0458-z

    Article  PubMed  Google Scholar 

  7. Zappia M, Carfora M, Romano AM et al (2016) Sonography of chondral print on humeral head. Skeletal Radiol. https://doi.org/10.1007/s00256-015-2238-x

    Article  PubMed  Google Scholar 

  8. Zappia M, Cuomo G, Martino MT et al (2016) The effect of foot position on power doppler ultrasound grading of achilles enthesitis. Rheumatol Int. https://doi.org/10.1007/s00296-016-3461-z

    Article  PubMed  Google Scholar 

  9. Hayashi D, Roemer FW, Guermazi A (2018) Imaging of osteoarthritis—recent research developments and future perspective. Br J Radiol. https://doi.org/10.1259/bjr.20170349

    Article  PubMed  PubMed Central  Google Scholar 

  10. Demehri S, Guermazi A, Kwoh CK (2016) Diagnosis and longitudinal assessment of osteoarthritis: review of available imaging techniques. Rheum Dis Clin North Am 42:607–620. https://doi.org/10.1016/j.rdc.2016.07.004

    Article  PubMed  Google Scholar 

  11. Arrigoni F, Barile A, Zugaro L et al (2017) Intra-articular benign bone lesions treated with magnetic resonance-guided focused ultrasound (MRgFUS): imaging follow-up and clinical results. Med Oncol. https://doi.org/10.1007/s12032-017-0904-7

    Article  PubMed  Google Scholar 

  12. Barile A, Bruno F, Arrigoni F et al (2017) Emergency and trauma of the ankle. Semin Musculoskelet Radiol. https://doi.org/10.1055/s-0037-1602408

    Article  PubMed  Google Scholar 

  13. Arrigoni F, Bruno F, Zugaro L et al (2018) Developments in the management of bone metastases with interventional radiology. Acta Biomed. https://doi.org/10.23750/abm.v89i1-s.7020

    Article  PubMed  PubMed Central  Google Scholar 

  14. Paparo F, Fabbro E, Piccazzo R et al (2012) Multimodality imaging of intraosseous ganglia of the wrist and their differential diagnosis. Radiol Med. https://doi.org/10.1007/s11547-012-0875-x

    Article  PubMed  Google Scholar 

  15. Aliprandi A, Di Pietto F, Minafra P et al (2014) Femoro-acetabular impingement: what the general radiologist should know. Radiol Medica. https://doi.org/10.1007/s11547-013-0314-7

    Article  Google Scholar 

  16. Kang Y, Yuan W, Ding X, Wang G (2016) Chondrosarcoma of the para-acetabulum: correlation of imaging features with histopathological grade. Radiol Medica. https://doi.org/10.1007/s11547-016-0673-y

    Article  Google Scholar 

  17. Cicala D, Briganti F, Casale L et al (2013) Atraumatic vertebral compression fractures: differential diagnosis between benign osteoporotic and malignant fractures by MRI. Musculoskelet Surg 97:169–179

    Article  Google Scholar 

  18. Caranci F, Briganti F, La Porta M et al (2013) Magnetic resonance imaging in brachial plexus injury. Musculoskelet Surg 97:181–190

    Article  Google Scholar 

  19. Silvestri E, Barile A, Albano D et al (2018) Interventional therapeutic procedures in the musculoskeletal system: an Italian Survey by the Italian College of Musculoskeletal Radiology. Radiol Medica. https://doi.org/10.1007/s11547-017-0842-7

    Article  Google Scholar 

  20. Barile A, Reginelli A, De Filippo M, Brunese L, Masciocchi C (2018) Diagnostic imaging and intervention of the musculoskeletal system: state of the art. Acta Bio Medica Atenei Parm 89:5–6

    Google Scholar 

  21. Barile A, Arrigoni F, Bruno F et al (2018) Present role and future perspectives of interventional radiology in the treatment of painful bone lesions. Futur Oncol. https://doi.org/10.2217/fon-2017-0657

    Article  Google Scholar 

  22. Arrigoni F, Bruno F, Zugaro L et al (2018) Role of interventional radiology in the management of musculoskeletal soft-tissue lesions. Radiol Medica. https://doi.org/10.1007/s11547-018-0893-4

    Article  Google Scholar 

  23. Cazzato RL, Arrigoni F, Boatta E et al (2018) Percutaneous management of bone metastases: state of the art, interventional strategies and joint position statement of the Italian College of MSK Radiology (ICoMSKR) and the Italian College of Interventional Radiology (ICIR). Radiol Med 1:3. https://doi.org/10.1007/s11547-018-0938-8

    Article  Google Scholar 

  24. Barile A, Lanni G, Conti L et al (2013) Lesions of the biceps pulley as cause of anterosuperior impingement of the shoulder in the athlete: potentials and limits of MR arthrography compared with arthroscopy. Radiol Med 118:112–122. https://doi.org/10.1007/s11547-012-0838-2

    Article  CAS  PubMed  Google Scholar 

  25. Barile A, Regis G, Masi R et al (2007) Musculoskeletal tumours: preliminary experience with perfusion MRI. Radiol Med 112:550–561. https://doi.org/10.1007/s11547-007-0161-5

    Article  CAS  PubMed  Google Scholar 

  26. Barile A, Arrigoni F, Zugaro L et al (2017) Minimally invasive treatments of painful bone lesions: state of the art. Med Oncol. https://doi.org/10.1007/s12032-017-0909-2

    Article  PubMed  Google Scholar 

  27. Masciocchi C, Conti L, D’Orazio F et al (2012) Errors in musculoskeletal MRI. In: Errors in radiology, pp 209–217

    Chapter  Google Scholar 

  28. Masciocchi C, Barile A, Lelli S, Calvisi V (2004) Magnetic resonance imaging (MRI) and arthro-MRI in the evaluation of the chondral pathology of the knee joint. Radiol Medica 108:149–158

    Google Scholar 

  29. Paparo F, Revelli M, Piccazzo R et al (2015) Extrusion of the medial meniscus in knee osteoarthritis assessed with a rotating clino-orthostatic permanent-magnet MRI scanner. Radiol Medica. https://doi.org/10.1007/s11547-014-0444-6

    Article  Google Scholar 

  30. Oei EHG, Wick MC, Müller-Lutz A et al (2018) Cartilage imaging: techniques and developments. Semin Musculoskelet Radiol 22:245–260. https://doi.org/10.1055/s-0038-1639471

    Article  PubMed  Google Scholar 

  31. Demehri S, Hafezi-Nejad N, Carrino JA (2015) Conventional and novel imaging modalities in osteoarthritis: current state of the evidence. Curr Opin Rheumatol 27:295–303. https://doi.org/10.1097/BOR.0000000000000163

    Article  PubMed  Google Scholar 

  32. Hunter DJ (2008) Advanced imaging in osteoarthritis. Bull NYU Hosp Jt Dis 66:251–260

    PubMed  Google Scholar 

  33. Hafezi-Nejad N, Demehri S, Guermazi A, Carrino JA (2018) Osteoarthritis year in review 2017: updates on imaging advancements. Osteoarthr Cartil 26:341–349. https://doi.org/10.1016/j.joca.2018.01.007

    Article  CAS  Google Scholar 

  34. Peterfy CG, Guermazi A, Zaim S et al (2004) Whole-organ magnetic resonance imaging score (WORMS) of the knee in osteoarthritis. Osteoarthr Cartil 12:177–190. https://doi.org/10.1016/j.joca.2003.11.003

    Article  CAS  Google Scholar 

  35. Casula V, Hirvasniemi J, Lehenkari P et al (2016) Association between quantitative MRI and ICRS arthroscopic grading of articular cartilage. Knee Surg Sport Traumatol Arthrosc 24:2046–2054. https://doi.org/10.1007/s00167-014-3286-9

    Article  Google Scholar 

  36. Li Q, Amano K, Link TM, Ma CB (2016) Advanced imaging in osteoarthritis. Sport Heal A Multidiscip Approach 8:418–428. https://doi.org/10.1177/1941738116663922

    Article  Google Scholar 

  37. Wilcox T, Hirshkowitz A (2015) NIH public access 85:1–27. https://doi.org/10.1016/j.neuroimage.2013.08.045.the

  38. Li X, Majumdar S (2013) Quantitative MRI of articular cartilage and its clinical applications. J Magn Reson Imaging 38:991–1008. https://doi.org/10.1002/jmri.24313

    Article  PubMed  Google Scholar 

  39. Li X, Majumdar S (2013) Quantitative MRI of articular cartilage and its clinical applications. J Magn Reson Imaging 38(5):991–1008

    Article  PubMed  Google Scholar 

  40. Crema MD, Roemer FW, Marra MD et al (2011) Articular cartilage in the knee: current MR imaging techniques and applications in clinical practice and research. Radiographics 31:37–61. https://doi.org/10.1148/rg.311105084

    Article  PubMed  Google Scholar 

  41. Kijowski R, Chaudhary R (2014) Quantitative magnetic resonance imaging of the articular cartilage of the knee joint. Magn Reson Imaging Clin N Am 22:649–669. https://doi.org/10.1016/j.mric.2014.07.005

    Article  PubMed  Google Scholar 

  42. Matzat SJ, van Tiel J, Gold GE, Oei EHG (2013) mQuantitative MRI techniques of cartilage coposition. Quant Imaging Med Surg 3:162–174. https://doi.org/10.3978/j.issn.2223-4292.2013.06.04

    Article  PubMed  PubMed Central  Google Scholar 

  43. Binks DA, Hodgson RJ, Ries ME et al (2013) Quantitative parametric MRI of articular cartilage: a review of progress and open challenges. Br J Radiol. https://doi.org/10.1259/bjr.20120163

    Article  PubMed  PubMed Central  Google Scholar 

  44. Eckstein F, Ateshian G, Burgkart R et al (2006) Proposal for a nomenclature for magnetic resonance imaging based measures of articular cartilage in osteoarthritis. Osteoarthr Cartil 14:974–983. https://doi.org/10.1016/j.joca.2006.03.005

    Article  CAS  Google Scholar 

  45. Link TM, Neumann J, Li X (2017) Prestructural cartilage assessment using MRI. J Magn Reson Imaging 45:949–965. https://doi.org/10.1002/jmri.25554

    Article  PubMed  Google Scholar 

  46. Link TM (2011) Cartilage imaging: significance, techniques and new developments. Springer, Berlin

    Book  Google Scholar 

  47. Matzat SJ, Kogan F, Fong GW, Gold GE (2015) NIH public access. https://doi.org/10.1007/s11926-014-0462-3.imaging

  48. MacKay JW, Low SBL, Smith TO et al (2018) Systematic review and meta-analysis of the reliability and discriminative validity of cartilage compositional MRI in knee osteoarthritis. Osteoarthr Cartil 26:1140–1152. https://doi.org/10.1016/j.joca.2017.11.018

    Article  CAS  Google Scholar 

  49. Guermazi A, Alizai H, Crema MD et al (2015) Compositional MRI techniques for evaluation of cartilage degeneration in osteoarthritis. Osteoarthr Cartil 23:1639–1653. https://doi.org/10.1016/j.joca.2015.05.026

    Article  CAS  Google Scholar 

  50. Hayashi D, Roemer FW, Guermazi A (2018) Recent advances in research imaging of osteoarthritis with focus on MRI, ultrasound and hybrid imaging. Clin Exp Rheumatol 36:43–52

    PubMed  Google Scholar 

  51. Shah N, Yoshioka H (2014) Imaging of articular cartilage. Cartil Restor Pract Clin Appl 24:17–37. https://doi.org/10.1007/9781461404279_3

    Article  Google Scholar 

  52. Exhibit S, Runge M (2011) Interest of MRI T2 mapping at 3T to detect cartilage lesion in the knee. https://doi.org/10.1594/ecr2011/C-0675

  53. Mosher TJ, Dardzinski BJ (2004) Cartilage MRI T2 relaxation time mapping: overview and applications. Semin Musculoskelet Radiol 8:355–368. https://doi.org/10.1055/s-2004-861764

    Article  PubMed  Google Scholar 

  54. Hesper T, Hosalkar HS, Bittersohl D et al (2014) T2* mapping for articular cartilage assessment: principles, current applications, and future prospects. Skelet Radiol 43:1429–1445. https://doi.org/10.1007/s00256-014-1852-3

    Article  Google Scholar 

  55. Xu J, Xie G, Di Y et al (2011) Value of T2-mapping and DWI in the diagnosis of early knee cartilage injury. J Radiol Case Rep 5:1–5. https://doi.org/10.3941/jrcr.v5i2.515

    Article  Google Scholar 

  56. Genovese E, Angeretti MG, Ronga M, Leonardi A, Novario R, Callegari L, Fugazzola C (2017) Follow-up of collagen meniscus implants by MRI. La Radiol Medica 112(7):1036–1048. https://doi.org/10.1007/s11547-007-0204-y

    Article  Google Scholar 

  57. Albano D, Martinelli N, Bianchi A et al (2017) Evaluation of reproducibility of the MOCART score in patients with osteochondral lesions of the talus repaired using the autologous matrix-induced chondrogenesis technique. Radiol Medica. https://doi.org/10.1007/s11547-017-0794-y

    Article  Google Scholar 

  58. Barile A, La Marra A, Arrigoni F et al (2016) Anaesthetics, steroids and platelet-rich plasma (PRP) in ultrasound-guided musculoskeletal procedures. Br J Radiol. https://doi.org/10.1259/bjr.20150355

    Article  PubMed  PubMed Central  Google Scholar 

  59. Shi WJ, Tjoumakaris FP, Lendner M, Freedman KB (2017) Biologic injections for osteoarthritis and articular cartilage damage: can we modify disease? Phys Sportsmed 45:203–223

    Article  PubMed  Google Scholar 

  60. Recht MP, Goodwin DW, Winalski CS, White LM (2005) MRI of articular cartilage: revisiting current status and future directions. Am J Roentgenol 185:899–914

    Article  Google Scholar 

  61. Trattnig S, Domayer S, Welsch GW et al (2009) MR imaging of cartilage and its repair in the knee—a review. Eur Radiol 19:1582–1594

    Article  CAS  PubMed  Google Scholar 

  62. Caumo F, Russo A, Faccioli N et al (2007) Autologous chondrocyte implantation: prospective MRI evaluation with clinical correlation. Radiol Med 112:722–731. https://doi.org/10.1007/s11547-007-0175-z

    Article  CAS  PubMed  Google Scholar 

  63. Welsch GH, Trattnig S, Scheffler K et al (2008) Magnetization transfer contrast and T2 mapping in the evaluation of cartilage repair tissue with 3T MRI. J Magn Reson Imaging 28:979–986. https://doi.org/10.1002/jmri.21516

    Article  PubMed  Google Scholar 

  64. Kim YS, Choi YJ, Lee SW et al (2016) Assessment of clinical and MRI outcomes after mesenchymal stem cell implantation in patients with knee osteoarthritis: a prospective study. Osteoarthr Cartil 24:237–245. https://doi.org/10.1016/j.joca.2015.08.009

    Article  CAS  Google Scholar 

  65. Marlovits S, Singer P, Zeller P et al (2006) Magnetic resonance observation of cartilage repair tissue (MOCART) for the evaluation of autologous chondrocyte transplantation: determination of interobserver variability and correlation to clinical outcome after 2 years. Eur J Radiol. https://doi.org/10.1016/j.ejrad.2005.08.007

    Article  PubMed  Google Scholar 

  66. Trattnig S, Winalski CS, Marlovits S, Jurvelin JS, Welsch GH, Potter HG (2011) Magnetic resonance imaging of cartilage repair: a review. Cartilage 2(1):5–26

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Barile.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bruno, F., Arrigoni, F., Palumbo, P. et al. New advances in MRI diagnosis of degenerative osteoarthropathy of the peripheral joints. Radiol med 124, 1121–1127 (2019). https://doi.org/10.1007/s11547-019-01003-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-019-01003-1

Keywords

Navigation