Skip to main content
Log in

Highlights on MRI of the fetal body

  • MAGNETIC RESONANCE IMAGING
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Fetal MRI is a level III diagnostic tool performed subsequently a level II prenatal ultrasound (US), in cases of inconclusive ultrasonographic diagnosis or when a further investigation is required to confirm or improve the diagnosis, to plan an appropriate pregnancy management. Fetal MRI plays an increasingly important role in the prenatal diagnosis of fetal neck, chest and abdominal malformations, even if its role has been amply demonstrated, especially, in the field of fetal CNS anomalies. Due to its multiparametricity and multiplanarity, MRI provides a detailed evaluation of the whole fetal respiratory, gastrointestinal and genitourinary systems, especially on T2-weighted (W) images, with a good tissue contrast resolution. In the evaluation of the digestive tract, T1-W sequences are very important in relation to the typical hyperintensity of the large intestine, due to the presence of meconium. The objective of this review is to focus on the application of fetal MRI in neck, chest and abdominal diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Triulzi F, Manganaro L, Volpe P (2011) Fetal magnetic resonance imaging: indications, study protocols and safety. Radiol Med 116:337–350

    Article  CAS  PubMed  Google Scholar 

  2. Manganaro L, Bernardo S, Antonelli A, Vinci V, Saldari M, Catalano C (2017) Fetal MRI of the central nervous system: state-of-the-art. Eur J Radiol 93:273–283

    Article  PubMed  Google Scholar 

  3. Patenaude Y, Qc S, Pugash D, Bc V, Lim K et al (2014) The use of magnetic resonance imaging in the obstetric patient. J Obs Gynaecol 36:349–355

    Google Scholar 

  4. Bahado-Singh RO, Goncalves LF (2013) Techniques, terminology, and indications for MRI in pregnancy. Semin Perinatol 37:334–339

    Article  PubMed  Google Scholar 

  5. Lyons K, Cassady C, Mehollin-Ray A, Krishnamurthy R (2015) Current role of fetal magnetic resonance imaging in body anomalies. Semin Ultrasound CT MR 36(4):310–323. https://doi.org/10.1053/j.sult.2015.05.013

    Article  PubMed  Google Scholar 

  6. Gholipour A, Estroff JA, Barnewolt CE, Robertson RL, Grant PE et al (2014) Fetal MRI: a technical update with educational aspirations. Concepts Magn Reson Part A Bridg Educ Res 43(6):237–266

    Article  CAS  PubMed  Google Scholar 

  7. Kasprian G, Del Río M, Prayer D (2010) Fetal diffusion imaging: pearls and solutions. Top Magn Reson Imaging 21(6):387–394. https://doi.org/10.1097/RMR.0b013e31823e6f80

    Article  PubMed  Google Scholar 

  8. Savelli S, Di Maurizio M, Perrone A, Tesei J, Francioso A, Angeletti M, La Barbera L, Ballesio L, de Felice C, Porfiri LM, Manganaro L (2007) MRI with diffusion-weighted imaging (DWI) and apparent diffusion coefficient (ADC) assessment in the evaluation of normal and abnormal fetal kidneys: preliminary experience. Prenat Diagn 27(12):1104–1111

    Article  PubMed  Google Scholar 

  9. Mirsky DM, Shekdar KV, Bilaniuk LT (2012) Fetal MRI: head and neck. Magn Reson Imaging Clin N Am 20(3):605–618. https://doi.org/10.1016/j.mric.2012.06.002

    Article  PubMed  Google Scholar 

  10. Tonni G, Granese R, Martins Santana EF, Parise Filho JP, Bottura I et al (2016) Prenatally diagnosed fetal tumors of the head and neck: a systematic review with antenatal and postnatal outcomes over the past 20 years. J Perinat Med 45(2):149–165. https://doi.org/10.1515/jpm-2016-0074

    Google Scholar 

  11. Taghavi K, Berkowitz RG, Fink AM, Farhadieh RD, Penington AJ (2012) Perinatal airway management of neonatal cervical teratomas. Int J Pediatr Otorhinolaryngol 76(7):1057–1060

    Article  PubMed  Google Scholar 

  12. Lazar DA, Cassady CI, Olutoye OO, Moise KJJ, Johnson A et al (2012) Tracheoesophageal displacement index and predictors of airway obstruction for fetuses with neck masses. J Pediatr Surg 47(1):46–50

    Article  PubMed  Google Scholar 

  13. Wolfe K, Lewis D, Witte D, Kline-Fath B, Lim FY et al (2013) Fetal cervical teratoma: what is the role of fetal MRI in predicting pulmonary hypoplasia? Fetal Diagn Ther 33(4):252–256

    Article  PubMed  Google Scholar 

  14. Laje P, Peranteau WH, Hedrick HL, Flake AW, Johnson MP et al (2015) Ex utero intrapartum treatment (EXIT) in the management of cervical lymphatic malformation. Pediatr Surg 50(2):311–314. https://doi.org/10.1016/j.jpedsurg.2014.11.024

    Article  Google Scholar 

  15. Tekşam M, Ozyer U, McKinney A (2005) MR imaging and ultrasound of fetal cervical cystic lymphangioma: utility in antepartum treatment planning. Diagn Interv Radiol 11:87–89

    PubMed  Google Scholar 

  16. Koelblinger C, Herold C, Nemec S, Berger-Kulemann V, Brugger PC et al (2013) Fetal magnetic resonance imaging of lymphangiomas. J Perinat Med 41(4):437–443. https://doi.org/10.1515/jpm-2012-0226

    Article  PubMed  Google Scholar 

  17. Gorincour G, Kokta V, Rypens F, Garel L, Powell J, Dubois J (2005) Imaging characteristics of two subtypes of congenital hemangiomas: rapidly involuting congenital hemangiomas and non-involuting congenital hemangiomas. Pediatr Radiol 35:1178–1185

    Article  PubMed  Google Scholar 

  18. Chaoui R, Heling KS (2005) New development in fetal heart scanning: three- and Four- dimensional fetal echocardiography. Semin Fetal Neonatal Med 10:567–577

    Article  CAS  PubMed  Google Scholar 

  19. Allan L (2010) Fetal cardiac scanning today. Prenat Diagn 30(7):639–643

    Article  PubMed  Google Scholar 

  20. Donofrio MT, Moon-Grady AJ, Hornberger LK (2014) Diagnosis and treatment of fetal cardiac disease: a scientific statement from the American Heart Association. Circulation 129(21):2183–2242

    Article  PubMed  Google Scholar 

  21. Porayette P, Madathil S, Sun L (2016) MRI reveals hemodynamic changes with acute maternal hyperoxygenation in human fetuses with and without congenital heart disease. Prenat Diagn 36(3):274–281

    Article  PubMed  Google Scholar 

  22. Manganaro L, Savelli S, Di Maurizio M, Perrone A, Francioso A, La Barbera L, Totaro P, Fierro F, Tomei A, Coratella F, Giancotti A, Ballesio L, Ventriglia F (2009) Assessment of congenital heart disease (CHD): is there a role for fetal magnetic resonance imaging (MRI)? Eur J Radiol 72(1):172–180. https://doi.org/10.1016/j.ejrad.2008.06.016

    Article  CAS  PubMed  Google Scholar 

  23. Manganaro L, Vinci V, Bernardo S, Sollazzo P, Sergi ME, Saldari M, Ventriglia F, Giancotti A, Rizzo G, Catalano C (2014) Magnetic resonance imaging of fetal heart: anatomical and pathological findings. J Matern Fetal Neonatal Med 27(12):1213–1219. https://doi.org/10.3109/14767058.2013.852174

    Article  CAS  PubMed  Google Scholar 

  24. Lloyd DF, Van Amerom JF, Pushparajah K, Simpson JM, Zidere V et al (2016) An exploration of the potential utility of fetal cardiovascular MRI as an adjunct to fetal echocardiography. Prenat Diagn 36(10):916–925. https://doi.org/10.1002/pd.4912

    Article  PubMed  PubMed Central  Google Scholar 

  25. Schellen C, Ernst S, Gruber GM, Mlczoch E, Weber M, Brugger PC, Ulm B, Langs G, Salzer-Muhar U, Prayer D, Kasprian G (2015) Fetal MRI detects early alterations of brain development in tetralogy of fallot. Am J Obstet Gynecol 213(3):392.e1–7

    Article  PubMed  Google Scholar 

  26. Manganaro L, Perrone A, Sassi S, Fierro F, Savelli S, Di Maurizio M, Tomei A, Francioso A, La Barbera L, Giancotti A, Ballesio L (2008) Diffusion-weighted MR imaging and apparent diffusion coefficient of the normal fetal lung: preliminary experience. Prenat Diagn 28(8):745–748. https://doi.org/10.1002/pd.2041

    Article  PubMed  Google Scholar 

  27. Balassy C, Kasprian G, Brugger PC, Csapo B, Weber M, Hörmann M, Bankier A, Bammer R, Herold CJ, Prayer D (2008) Diffusion-weighted MR imaging of the normal fetal lung. Eur Radiol 18(4):700–706

    Article  PubMed  Google Scholar 

  28. Moore RJ, Strachan B, Tyler DJ, Baker PN, Gowland PA (2001) In vivo diffusion measurements as an indication of fetal lung maturation using echo planar imaging at 0.5T. Magn Reson Med 45(2):247–253

    Article  CAS  PubMed  Google Scholar 

  29. Afacan O, Gholipour A, Mulkern RV, Barnewolt CE, Estroff JA, Connolly SA, Parad RB, Bairdain S, Warfield SK (2016) Fetal lung apparent diffusion coefficient measurement using diffusion-weighted MRI at 3 Tesla: correlation with gestational age. J Magn Reson Imaging 6:1650–1655. https://doi.org/10.1002/jmri.25294

    Article  Google Scholar 

  30. Barth RA (2012) Imaging of fetal chest masses. Pediatr Radiol 1:S62–S73. https://doi.org/10.1007/s00247-011-2171-7

    Article  Google Scholar 

  31. Dighe MK, Peterson SE, Dubinsky TJ, Perkins J, Cheng E (2011) EXIT procedure: technique and indications with prenatal imaging parameters for assessment of airway patency. Radiographics 31(2):511–526

    Article  PubMed  Google Scholar 

  32. Zamora IJ, Sheikh F, Cassady CI, Olutoye OO, Mehollin-Ray AR, Ruano R, Lee TC, Welty SE, Belfort MA, Ethun CG, Kim ME, Cass DL (2014) Fetal MRI lung volumes are predictive of perinatal outcomes in fetuses with congenital lung masses. J Pediatr Surg 49(6):853–858

    Article  PubMed  Google Scholar 

  33. Jani J, Nicolaides KH, Keller RL, Benachi A, Peralta CF et al (2007) Antenatal-CDH-Registry Group, observed to expected lung area to head circumference ratio in the prediction of survival in fetuses with isolated diaphragmatic hernia. Ultrasound Obstet Gynecol 30:67–71

    Article  CAS  PubMed  Google Scholar 

  34. Kilian AK, Schaible T, Hofmann V, Brade J, Neff KW, Büsing KA (2009) Congenital diaphragmatic hernia: predictive value of MRI relative lung-to-head ratio compared with MRI fetal lung volume and sonographic lung-to-head ratio. Am J Radiol 192:153–158

    Google Scholar 

  35. Ward VL (2002) MR imaging in the prenatal diagnosis of fetal chest masses: effects on diagnostic accuracy, clinical decision making, parental understanding, and prediction of neonatal respiratory health outcomes. Acad Radiol 9(9):1064–1069

    Article  PubMed  Google Scholar 

  36. Deshmukh S, Rubesova E, Barth R (2010) MR assessment of normal fetal lung volumes: a literature review. Am J Roentgenol 194:W212–W217

    Article  Google Scholar 

  37. Kastenholz KE, Weis M, Hagelstein C, Weiss C, Kehl S, Schaible T, Neff K (2016) Correlation of observed-to-expected mri fetal lung volume and ultrasound lung-to-head ratio at different gestational times in fetuses with congenital diaphragmatic hernia. Am J Roentgenol 206(4):856–866

    Article  Google Scholar 

  38. Rubesova E (2016) Why do we need more data on MR volumetric measurements of the fetal lung? Pediatr Radiol 46(2):167–171. https://doi.org/10.1007/s00247-015-3521-7

    Article  PubMed  Google Scholar 

  39. Sandaite I, Claus F, De Keyzer F, Donè E, Van Mieghem T et al (2011) Examining the relationship between the lung-to-head ratio measured on ultrasound and lung volumetry by magnetic resonance in fetuses with isolated congenital diaphragmatic hernia. Fetal Diagn Ther 29:80–87

    Article  PubMed  Google Scholar 

  40. Jani J, Cannie M, Sonigo P, Robert Y, Moreno O et al (2008) Value of prenatal magnetic resonance imaging in the prediction of postnatal outcome in fetuses with diaphragmatic hernia. Ultrasound Obstet Gynecol 32:793–799

    Article  CAS  PubMed  Google Scholar 

  41. Adzick NS (2009) Management of fetal lung lesions. Clin Perinatol 36:363–376

    Article  PubMed  Google Scholar 

  42. Euser AG, Meyers ML, Zaretsky MV, Crombleholme TM (2016) Comparison of congenital pulmonary airway malformation volume ratios calculated by ultrasound and magnetic resonance imaging. J Matern Fetal Neonatal Med 29(19):3172–3177

    PubMed  Google Scholar 

  43. Kozinszky Z, Keresztúri A, Pásztor N, Daru J, Sikovanyecz J et al (2013) Magnetic resonance vs. sonographic imaging: diagnostics of a large congenital pulmonary airway malformation. Fetal Pediatr Pathol 31(1):55–59

    Article  PubMed  Google Scholar 

  44. Recio Rodríguez M, Martínez de Vega V, Cano Alonso R, Carrascoso Arranz J, Ten Martínez P, Pérez Pedregosa J (2012) MR imaging of thoracic abnormalities in the fetus. Radiographics 32(7):E305–E321. https://doi.org/10.1148/rg.327125053

    Article  PubMed  Google Scholar 

  45. Stocker JT (2002) Congenital pulmonary airway malformation: a new name for and an expanded classification of congenital cystic adenomatoid malformation of the lung, Symposium 24: non-neoplastic lung disease. Histopathology 41(2):424–430

    Google Scholar 

  46. Chowdhury MM, Chakraborty S (2015) Imaging of congenital lung malformations. Semin Pediatr Surg 24(4):168–175

    Article  PubMed  Google Scholar 

  47. Kuroda T, Nishijima E, Maeda K, Fuchimoto Y, Hirobe S, Tazuke Y, Watanabe T, Usui N (2016) Perinatal features of congenital cystic lung diseases: results of a nationwide multicentric study in Japan. Pediatr Surg Int 32(9):827–831

    Article  PubMed  Google Scholar 

  48. Liu YP, Chen CP, Shih SL, Chen YF, Yang FS, Chen SC (2010) Fetal cystic lung lesions: evaluation with magnetic resonance imaging. Pediatr Pulmonol 45(6):592–600. https://doi.org/10.1002/ppul.21226

    PubMed  Google Scholar 

  49. Zucker EJ, Epelman M, Newman B (2015) Perinatal thoracic mass lesions: pre- and postnatal imaging. Semin Ultrasound CT MR 36(6):501–521. https://doi.org/10.1053/j.sult.2015.05.016

    Article  PubMed  Google Scholar 

  50. D’altro P, Werner H, Gasparetto TD, Domingues RC, Rodrigues L, Marchiori E, Gasparetto EL (2010) Congenital chest malformations: a multimodality approach with emphasis on fetal MR imaging. Radiographics 30(2):385–395

    Article  Google Scholar 

  51. Azizkhan RG, Crombleholme TM (2008) Congenital cystic lung disease: contemporary antenatal and postnatal management. Pediatr Surg Int 24(6):643–657. https://doi.org/10.1007/s00383-008-2139-3

    Article  PubMed  Google Scholar 

  52. Johnston JH, Kline-Fath BM, Bitters C, Calvo-Garcia MA, Lim FY (2016) Congenital overinflation: prenatal MRI and US findings and outcomes. Prenat Diagn 36(6):568–575. https://doi.org/10.1002/pd.4827

    Article  PubMed  Google Scholar 

  53. Thacker PG, Schooler GR, Caplan MJ, Lee EY (2015) Developmental lung malformations in children: recent advances in imaging techniques, classification system, and imaging findings. J Thorac Imaging 30(1):29–43

    Article  PubMed  Google Scholar 

  54. Pacharn P, Kline-Fath B, Calvo-Garcia M, Linam LE, Rubio EI, Salisbury S, Brody AS (2013) Congenital lung lesions: prenatal MRI and postnatal findings. Pediatr Radiol 43(9):1136–1143. https://doi.org/10.1007/s00247-013-2668-3

    Article  PubMed  Google Scholar 

  55. Gajewska-Knapik K, Impey L (2015) Congenital lung lesions: prenatal diagnosis and intervention. Semin Pediatr Surg 24(4):156–159. https://doi.org/10.1053/j.sempedsurg.2015.01.012

    Article  PubMed  Google Scholar 

  56. Mong A, Johnson AM, Kramer SS, Coleman BG, Hedrick HL, Kreiger P, Flake A, Johnson M, Wilson RD, Adzick NS, Jaramillo D (2008) Congenital high airway obstruction syndrome: MR/US findings, effect on management, and outcome. Pediatr Radiol 38(11):1171–1179. https://doi.org/10.1007/s00247-008-0962-2

    Article  PubMed  Google Scholar 

  57. Guimaraes CV, Linam LE, Kline-Fath BM, Donnelly LF, Calvo-Garcia MA, Rubio EI, Livingston JC, Hopkin RJ, Peach E, Lim FY, Crombleholme TM (2009) Prenatal MRI findings of fetuses with congenital high airway obstruction sequence. Korean J Radiol 10(2):129–134. https://doi.org/10.3348/kjr.2009.10.2.129

    Article  PubMed  PubMed Central  Google Scholar 

  58. Riedlinger WF, Vargas SO, Jennings RW, Estroff JA, Barnewolt CE, Lillehei CW, Wilson JM, Colin AA, Reid LM, Kozakewich HP (2006) Bronchial atresia is common to extralobar sequestration, intralobar sequestration, congenital cystic adenomatoid malformation, and lobar emphysema. Pediatr Dev Pathol 9(5):361–373

    Article  PubMed  Google Scholar 

  59. Alamo L, Reinberg O, Vial Y, Gudinchet F, Meuli R (2013) Comparison of foetal US and MRI in the characterisation of congenital lung anomalies. Eur J Radiol 82(12):e860–e866

    Article  PubMed  Google Scholar 

  60. Alamo L, Vial Y, Gengler C, Meuli R (2016) Imaging findings of bronchial atresia in fetuses, neonates and infants. Pediatr Radiol 46(3):383–390. https://doi.org/10.1007/s00247-015-3487-5

    Article  PubMed  Google Scholar 

  61. Zeidan S, Gorincour G, Potier A, Ughetto F, Dubus JC, Chrestian MA, Grosse C, Gamerre M, Guys JM, De Lagausie P (2009) Congenital lung malformation: evaluation of prenatal and postnatal radiological findings. Respirology 14(7):1005–1011. https://doi.org/10.1111/j.1440-1843.2009.01591.x

    Article  PubMed  Google Scholar 

  62. Thakkar HS, Durell J, Chakraborty S, Tingle BL, Choi A, Fowler DJ, Gould SJ, Impey L, Lakhoo K (2017) Antenatally detected congenital pulmonary airway malformations: the oxford experience. Eur J Pediatr Surg 27(4):324–329

    Article  PubMed  Google Scholar 

  63. Victoria T, Bebbington MW, Danzer E, Flake AW, Johnson MP, Dinan D, Adzick NS, Hedrick HL (2012) Use of magnetic resonance imaging in prenatal prognosis of the fetus with isolated left congenital diaphragmatic hernia. Prenat Diagn 32:715–723

    Article  PubMed  Google Scholar 

  64. Tovar JA (2012) Congenital diaphragmatic hernia. Orphanet J Rare Dis 7:1. https://doi.org/10.1186/1750-1172-7

    Article  PubMed  PubMed Central  Google Scholar 

  65. Kumar P, Chandrasekharan Rawat M, Madappa R, Rothstein DH, Lakshminrusimha S (2017) Congenital Diaphragmatic hernia—a review. Matern Health Neonatol Perinatol 3:6

    Article  Google Scholar 

  66. Kinane TB (2007) Lung development and implications for hypoplasia found in congenital diaphragmatic hernia. Am J Med Genet C Semin Med Genet 145C:117–124

    Article  CAS  PubMed  Google Scholar 

  67. Zeiss I, Kehl S, Link K, Neff W, Schaible T, Sütterlin M, Siemer J (2011) Associated malformations in congenital diaphragmatic hernia. Am J Perinatol 28(3):211–218. https://doi.org/10.1055/s-0030-1268235

    Article  Google Scholar 

  68. Coleman A, Phithakwatchara N, Shaaban A, Keswani S, Kline-Fath B, Kingma P, Haberman B, Lim FY (2015) Fetal lung growth represented by longitudinal changes in MRI-derived fetal lung volume parameters predicts survival in isolated left-sided congenital diaphragmatic hernia. Prenat Diagn 35:160–166. https://doi.org/10.1002/pd.4510

    Article  PubMed  Google Scholar 

  69. Cannie M, Jani J, Meerschaert J, Allegaert K, Done’ E, Marchal G, Deprest J, Dymarkowski S (2008) Prenatal prediction of survival in isolated diaphragmatic hernia using observed to expected total fetal lung volume determined by magnetic resonance imaging based on either gestational age or fetal body volume. Ultrasound Obstet Gynecol 32:633–639. https://doi.org/10.1002/uog.6139

    Article  CAS  PubMed  Google Scholar 

  70. Kitano Y, Nakagawa S, Kuroda T, Honna T, Itoh Y, Nakamura T, Morikawa N, Shimizu N, Kashima K, Hayashi S, Sago H (2005) Liver position in fetal congenital diaphragmatic hernia retains a prognostic value in the era of lung-protective strategy. J Pediatr Surg 40(12):1827–1832

    Article  PubMed  Google Scholar 

  71. Werner NL, Coughlin M, Kunisaki SM, Hirschl R, Ladino-Torres M, Berman D, Kreutzman J, Mychaliska GB (2016) Prenatal and postnatal markers of severity in congenital diaphragmatic hernia have similar prognostic ability. Prenat Diagn 36(2):107–111. https://doi.org/10.1002/pd.4721

    Article  CAS  PubMed  Google Scholar 

  72. Furey EA, Bailey AA, Twickler DM (2016) Fetal MR imaging of gastrointestinal abnormalities. Radiographics 36(3):904–917. https://doi.org/10.1148/rg.2016150109

    Article  PubMed  Google Scholar 

  73. Manganaro L, Saldari M, Bernardo S, Vinci V, Aliberti C, Sollazzo P, Giancotti A, Capozza F, Porpora MG, Cozzi DA, Catalano C (2015) Role of magnetic resonance imaging in the prenatal diagnosis of gastrointestinal fetal anomalies. Radiol Med 120:393–403. https://doi.org/10.1007/s11547-014-0464-2

    Article  PubMed  Google Scholar 

  74. Ledbetter DJ (2006) Gastroschisis and omphalocele. Surg Clin North Am 86:249–260 (vii)

    Article  PubMed  Google Scholar 

  75. Torres US, Portela-Oliveira E, Braga Fdel C, Werner H Jr, D’altro PA, Souza AS (2015) When closure fails: what the radiologist needs to know about the embryology, anatomy, and prenatal imaging of ventral body wall defects. Semin Ultrasound CT MR 36(6):522–536. https://doi.org/10.1053/j.sult.2015.01.001

    Article  PubMed  Google Scholar 

  76. Gómez Huertas M, Culiañez Casas M, Molina García FS, Carrillo Badillo MP, Pastor Pons E (2016) Complementary role of magnetic resonance imaging in the study of the fetal urinary system. Radiologia 58(2):101–110. https://doi.org/10.1016/j.rx.2015.12.003

    Article  PubMed  Google Scholar 

  77. Chauvin NA, Epelman M, Victoria T, Johnson AM (2012) Complex genitourinary abnormalities on fetal MRI: imaging findings and approach to diagnosis. Am J Roentgenol 199(2):W222–W231. https://doi.org/10.2214/AJR.11.7761

    Article  Google Scholar 

  78. Chaumoitre K, Colavolpe N, Shojai R, Sarran A, D’Ercole C, Panuel M (2007) Diffusion-weighted magnetic resonance imaging with apparent diffusion coefficient (ADC) determination in normal and pathological fetal kidneys. Ultrasound Obstet Gynecol 29:22–31

    Article  CAS  PubMed  Google Scholar 

  79. Witzani L, Brugger PC, Hörmann M, Kasprian G, CsaponeBalassy C, Prayer D (2006) Normal renal development investigated with fetal MRI. Eur J Radiol 57:294–302. https://doi.org/10.1016/j.ejrad.2005.11.027

    Article  PubMed  Google Scholar 

  80. Hugele F, Dumont C, Boulot P, Couture A, Prodhomme O (2015) Does prenatal MRI enhance fetal diagnosis of intra-abdominal cysts? Prenat Diagn 35(7):669–674. https://doi.org/10.1002/pd.4590

    Article  PubMed  Google Scholar 

  81. Epelman M, Daneman A, Donnelly LF, Averill LW, Chauvin NA (2014) Neonatal imaging evaluation of common prenatally diagnosed genitourinary abnormalities. Semin Ultrasound CT MR 35(6):528–554. https://doi.org/10.1053/j.sult.2014.07.004

    Article  PubMed  Google Scholar 

  82. Maki E, Oh K, Rogers S, Sohaey R (2014) Imaging and differential diagnosis of suprarenal masses in the fetus. JUM 33(5):895–904. https://doi.org/10.7863/ultra.33.5.895

    Google Scholar 

  83. Nagaraj UD, Kline-Fath BM (2015) Diagnostic imaging of fetal and neonatal abdominal and soft tissue tumors. Curr Pediatr Rev 11(3):143–150

    Article  PubMed  Google Scholar 

  84. Flanagan SM, Rubesova E, Jaramillo D, Barth RA (2016) Fetal suprarenal masses-assessing the complementary role of magnetic resonance and ultrasound for diagnosis. Pediatr Radiol 46(2):246–254. https://doi.org/10.1007/s00247-015-3470-1

    Article  PubMed  Google Scholar 

  85. Sherwood W, Boyd P, Lakhoo K (2008) Post-natal outcome of antenatally diagnosed intra-abdominal cysts. Pediatr Surg Int 24:763–765. https://doi.org/10.1007/s00383-014-3635-2

    Article  CAS  PubMed  Google Scholar 

  86. Caire JT, Ramus RM, Magee KP, Fullington BK, Ewalt DH, Twickler DM (2003) MRI of fetal genitourinary anomalies. Am J Roentgenol 181:1381–1385

    Article  Google Scholar 

  87. Rubesova E (2012) Fetal bowel anomalies-US and MR assessment. Pediatr Radiol 42(1):S101–S106

    Article  PubMed  Google Scholar 

  88. Hochart V, Verpillat P, Langlois C, Garabedian C, Bigot J, Debarge VH, Sfeir R, Avni FE (2015) The contribution of fetal MR imaging to the assessment of oesophageal atresia. Eur Radiol 25(2):306–314. https://doi.org/10.1007/s00330-014-3444-y

    Article  CAS  PubMed  Google Scholar 

  89. Amini H, Wikstrom J, Ahlström HH, Axelsson O (2011) Second trimester fetal magnetic resonance imaging improves diagnosis of non-central nervous system anomalies. Acta Obstet Gynecol Scand 90:380–389. https://doi.org/10.1111/j.1600-0412.2011.01071.x

    Article  PubMed  Google Scholar 

  90. Best KE, Tennant PW, Addor MC, Bianchi F, Boyd P, Calzolari E, Dias CM, Doray B, Draper E, Garne E, Gatt M, Greenlees R, Haeusler M, Khoshnood B, McDonnell B, Mullaney C, Nelen V, Randrianaivo H, Rissmann A, Salvador J, Tucker D, Wellesly D, Rankin J (2012) Epidemiology of small intestinal atresia in Europe: a register-based study. Arch Dis Child Fetal Neonatal Ed 97(5):F353–F358. https://doi.org/10.1136/fetalneonatal-2011-300631

    Article  PubMed  Google Scholar 

  91. Calvo-Garcia MA, Kline-Fath BM, Rubio EI, Merrow AC, Guimaraes CV, Lim FY (2013) Fetal MRI of cloacal exstrophy. Pediatr Radiol 43(5):593–604

    Article  PubMed  Google Scholar 

  92. Danzer E, Hubbard AM, Hedrick HL, Johnson MP, Wilson RD, Howell LJ, Flake AW, Adzick NS (2006) Diagnosis and characterization of fetal sacrococcygeal teratoma with prenatal MRI. Am J Roentgenol 187(4):W350–W356

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucia Manganaro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manganaro, L., Antonelli, A., Bernardo, S. et al. Highlights on MRI of the fetal body. Radiol med 123, 271–285 (2018). https://doi.org/10.1007/s11547-017-0834-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-017-0834-7

Keywords

Navigation