Skip to main content
Log in

Preclinical Study of a Combination of Erlotinib and Bevacizumab in Early Stages of Unselected Non-Small Cell Lung Cancer Patient-Derived Xenografts

  • Original Research Article
  • Published:
Targeted Oncology Aims and scope Submit manuscript

Abstract

Background

The differential outcomes of clinical studies of the targeted therapies for non-small cell lung cancer (NSCLC) indicate that better stratification of patients is required. This could be achieved with the help of patient-derived xenografts (PDX) of epidermal growth factor receptor (EGFR) wild-type patients resistant to erlotinib treatment.

Objective

To explore the potential of patient-derived NSCLC xenografts to optimize therapy using 24 well-characterized early-stage NSCLC PDX.

Method

Patient tumor tissue was transplanted subcutaneously into nude mice. After engraftment, tumors were expanded and the sensitivity was tested. Gene expression analysis was used to identify differentially expressed genes between erlotinib responder (n = 3) and non-responder (n = 21). Tumor tissue was analyzed with TaqMan PCR, immunohistochemistry and ELISA to examine the response of the models.

Results

Gene expression analysis revealed vascular endothelial growth factor A (VEGFA) to be up-regulated in erlotinib non-responder. Because of that, the combination of erlotinib with bevacizumab was evaluated in one erlotinib-sensitive and four erlotinib-resistant PDX. Combination treatment was superior to monotherapy, leading to the highest and significant inhibition of tumor growth in all models investigated. A decline of VEGFA protein and an increase of VEGFA-mRNA were observed after bevacizumab treatment. Bevacizumab treatment resulted in a distinct decrease of blood vessel number.

Conclusion

This study showed that with the help of preclinical PDX models, drug combinations for therapy improvement can be identified on a rational basis. It was observed that a dual blockage of EGFR and VEGFA was more effective than a monotherapy for the treatment of NSCLC in selected PDX models. PDX could be employed to optimize the treatment of cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. American Cancer Society Global Cancer Facts & Figures 2012. http://www.cancer.org/research/cancerfactsstatistics/global. 2012. Accessed Apr 2015.

  2. Ferlay J, Parkin DM. Steliarova-Foucher E Estimates of cancer incidence and mortality in Europe in 2008. Eur J Cancer. 2010;46:765–81.

    Article  CAS  PubMed  Google Scholar 

  3. Jemal A, Bray F, Center MM et al. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.

    Article  Google Scholar 

  4. Pakkala S, Ramalingam SS. Combined inhibition of vascular endothelial growth factor and epidermal growth factor signaling in non-small-cell lung cancer therapy. Clin Lung Cancer. 2009;10(1):S17–23.

    Article  CAS  PubMed  Google Scholar 

  5. Pal SK, Figlin RA, Reckamp K. Targeted therapies for nonsmall cell lung cancer: an evolving landscape. Mol Cancer Ther. 2010;9:1931–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Belani CP, Goss G, Blumenschein Jr G. Recent clinical developments and rationale for combining targeted agents in nonsmall cell lung cancer (NSCLC). Cancer Treat Rev. 2012;38:173–84.

    Article  CAS  PubMed  Google Scholar 

  7. Shepherd FA, Rodrigues PJ, Ciuleanu T, et al. Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med. 2005;353:123–32.

    Article  CAS  PubMed  Google Scholar 

  8. Paez JG, Janne PA, Lee JC, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science. 2004;304:1497–500.

    Article  CAS  PubMed  Google Scholar 

  9. Pao W, Miller V, Zakowski M, et al. EGF receptor gene mutations are common in lung cancers from Bnever smokers^ and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci U S A. 2004;101:13306–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lynch TJ, Bell DW, Sordella R, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med. 2004;350:2129–39.

    Article  CAS  PubMed  Google Scholar 

  11. Laurie SA, Goss GD. Role of epidermal growth factor receptor inhibitors in epidermal growth factor receptor wild-type nonsmall-cell lung cancer. J Clin Oncol. 2013;31:1061–9.

    Article  CAS  PubMed  Google Scholar 

  12. Byers LA, Heymach JV. Dual targeting of the vascular endothelial growth factor and epidermal growth factor receptor pathways: rationale and clinical applications for non-small-cell lung cancer. Clin Lung Cancer. 2007;8 Suppl 2:S79–85.

    Article  CAS  PubMed  Google Scholar 

  13. Pore N, Jiang Z, Gupta A, et al. EGFR tyrosine kinase inhibitors decrease VEGF expression by both hypoxia-inducible factor (HIF)-1-independent and HIF-1-dependent mechanisms. Cancer Res. 2006;66:3197–204.

    Article  CAS  PubMed  Google Scholar 

  14. Brekken RA, Overholser JP, Stastny VA, et al. Selective inhibition of vascular endothelial growth factor (VEGF) receptor 2 (KDR/Flk-1) activity by a monoclonal anti-VEGF antibody blocks tumor growth in mice. Cancer Res. 2000;60:5117–24.

    CAS  PubMed  Google Scholar 

  15. Sandler A, Gray R, Perry MC, et al. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med. 2006;355:2542–50.

    Article  CAS  PubMed  Google Scholar 

  16. Tonra JR, Deevi DS, Corcoran E, et al. Synergistic antitumor effects of combined epidermal growth factor receptor and vascular endothelial growth factor receptor-2 targeted therapy. Clin Cancer Res. 2006;12:2197–207.

    Article  CAS  PubMed  Google Scholar 

  17. Lichtenberger BM, Tan PK, Niederleithner H, et al. Autocrine VEGF signaling synergizes with EGFR in tumor cells to promote epithelial cancer development. Cell. 2010;140:268–79.

    Article  CAS  PubMed  Google Scholar 

  18. Larsen AK, Ouaret D, El OK, et al. Targeting EGFR and VEGF(R) pathway cross-talk in tumor survival and angiogenesis. Pharmacol Ther. 2011;131:80–90.

    Article  CAS  PubMed  Google Scholar 

  19. Herbst RS, Johnson DH, Mininberg E, et al. Phase I/II trial evaluating the anti-vascular endothelial growth factor monoclonal antibody bevacizumab in combination with the HER-1/epidermal growth factor receptor tyrosine kinase inhibitor erlotinib for patients with recurrent non-small-cell lung cancer. J Clin Oncol. 2005;23:2544–55.

    Article  CAS  PubMed  Google Scholar 

  20. Tortora G, Ciardiello F, Gasparini G. Combined targeting of EGFR-dependent and VEGF-dependent pathways: rationale, preclinical studies and clinical applications. Nat Clin Pract Oncol. 2008;5:521–30.

    Article  CAS  PubMed  Google Scholar 

  21. Hainsworth J, Herbst RA. phase III, multicenter, placebocontrolled, doubleblind, randomized clinical trial to evaluate the efficacy of bevacizumab (Avastin) in combination with erlotinib (Tarceva) compared with erlotinib alone for treatment of advanced non-small cell lung cancer after failure of standard first-line chemotherapy. J Thorac Oncol. 2008;3(4):302.

    Google Scholar 

  22. Miller VA, O’Connor P, Soh C, et al. A randomized, doubleblind, placebo controlled, phase IIIb trial (ATLAS) comparing bevacizumab (B) therapy with or without erlotinib (E) after completion of chemotherapy with B for first-line treatment of locally advanced, recurrent, or metastatic NSCLC. J Clin Oncol. 2009;27:799.

    Article  Google Scholar 

  23. Ciuleanu T, Tsai CM, Tsao CJ, et al. A phase II study of erlotinib in combination with bevacizumab versus chemotherapy plus bevacizumab in the first-line treatment of advanced nonsquamous non-small cell lung cancer. Lung Cancer. 2013;82:276–81.

    Article  CAS  PubMed  Google Scholar 

  24. Johnson BE, Kabbinavar F, Fehrenbacher L, et al. ATLAS: randomized, double-blind, placebo-controlled, phase IIIB trial comparing bevacizumab therapy with or without erlotinib, after completion of chemotherapy, with bevacizumab for first-line treatment of advanced non-small-cell lung cancer. J Clin Oncol. 2013;31:3926–34.

    Article  CAS  PubMed  Google Scholar 

  25. Seto T, Kato T, Nishio M, et al. Erlotinib alone or with bevacizumab as first-line therapy in patients with advanced nonsquamous non-small-cell lung cancer harbouring EGFR mutations (JO25567): an open-label, randomised, multicentre, phase 2 study. Lancet Oncol. 2014;15:1236–44.

    Article  CAS  PubMed  Google Scholar 

  26. Sun L, Ma JT, Zhang SL, et al. Efficacy and safety of chemotherapy or tyrosine kinase inhibitors combined with bevacizumab versus chemotherapy or tyrosine kinase inhibitors alone in the treatment of non-small cell lung cancer: a systematic review and meta-analysis. Med Oncol. 2015;32:473.

    PubMed  Google Scholar 

  27. Fichtner I, Rolff J, Soong R, et al. Establishment of patientderived non-small cell lung cancer xenografts as models for the identification of predictive biomarkers. Clin Cancer Res. 2008;14:6456–68.

    Article  CAS  PubMed  Google Scholar 

  28. Kuner R. Lung Cancer Gene Signatures and Clinical Perspectives. Microarrays. 2013;2:318–39.

    Article  Google Scholar 

  29. Workman P, Aboagye EO, Balkwill F, et al. Guidelines for the welfare and use of animals in cancer research. Br J Cancer. 2010;102:1555–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fiebig HH. Burger AM Human tumor xenografts and explants. In: Teicher, B.A, editors. Animal models in cancer research. Humana Press; 2002. pp. 113–137.

  31. Daniel VC, Marchionni L, Hierman JS, et al. A primary xenograft model of small-cell lung cancer reveals irreversible changes in gene expression imposed by culture in vitro. Cancer Res. 2009;69:3364–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pao W, Wang TY, Riely GJ, et al. KRAS mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib. PLoS Med. 2005;2:e17.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Li H, Takayama K, Wang S, et al. Addition of bevacizumab enhances antitumor activity of erlotinib against non-small cell lung cancer xenografts depending on VEGF expression. Cancer Chemother Pharmacol. 2014;74:1297–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jung YD, Mansfield PF, Akagi M, et al. Effects of combination anti-vascular endothelial growth factor receptor and antiepidermal growth factor receptor therapies on the growth of gastric cancer in a nude mouse model. Eur J Cancer. 2002;38:1133–40.

    Article  CAS  PubMed  Google Scholar 

  35. Naumov GN, Nilsson MB, Cascone T, et al. Combined vascular endothelial growth factor receptor and epidermal growth factor receptor (EGFR) blockade inhibits tumor growth in xenograft models of EGFR inhibitor resistance. Clin Cancer Res. 2009;15:3484–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. KimKJ LB, Houck K, et al. The vascular endothelial growth factor proteins: identification of biologically relevant regions by neutralizing monoclonal antibodies. Growth Factors. 1992;7:53–64.

    Article  Google Scholar 

  37. Presta LG, Chen H, O’Connor SJ, et al. Humanization of an anti-vascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disorders. Cancer Res. 1997;57:4593–9.

    CAS  PubMed  Google Scholar 

  38. Stefanini MO, Wu FT, Mac GF, et al. Increase of plasma VEGF after intravenous administration of bevacizumab is predicted by a pharmacokinetic model. Cancer Res. 2010;70:9886–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yu YF, Chen ZW, Li ZM, et al. The effects of cetuximab alone and in combination with endostatin on vascular endothelial growth factor and interleukin-8 expression in human lung adenocarcinoma cells. Curr Ther Res Clin Exp. 2009;70:116–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ellis LM. Epidermal growth factor receptor in tumor angiogenesis. Hematol Oncol Clin North Am. 2004;18:1007–21.

    Article  PubMed  Google Scholar 

  41. Swinson DE, O’Byrne KJ. Interactions between hypoxia and epidermal growth factor receptor in non-small-cell lung cancer. Clin Lung Cancer. 2006;7:250–6.

    Article  CAS  PubMed  Google Scholar 

  42. Perrotte P, Matsumoto T, Inoue K, et al. Anti-epidermal growth factor receptor antibody C225 inhibits angiogenesis in human transitional cell carcinoma growing orthotopically in nude mice. Clin Cancer Res. 1999;5:257–65.

    CAS  PubMed  Google Scholar 

  43. Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science. 2005;307:58–62.

    Article  CAS  PubMed  Google Scholar 

  44. Ellis LM, Hicklin DJ. VEGF-targeted therapy: mechanisms of anti-tumour activity. Nat Rev Cancer. 2008;8:579–91.

    Article  CAS  PubMed  Google Scholar 

  45. Tong RT, Boucher Y, Kozin SV, et al. Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res. 2004;64:3731–6.

    Article  CAS  PubMed  Google Scholar 

  46. Wildiers H, Guetens G, De BG, et al. Effect of antivascular endothelial growth factor treatment on the intratumoral uptake of CPT-11. Br J Cancer. 2003;88:1979–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Batchelor TT, Sorensen AG, di Tomaso E, et al. AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell. 2007;11:83–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Winkler F, Kozin SV, Tong RT, et al. Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell. 2004;6:553–63.

    CAS  PubMed  Google Scholar 

  49. Yen P, Finley SD, Engel-Stefanini MO, et al. A twocompartment model of VEGF distribution in the mouse. PLoS One. 2011;6:e27514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wykoff CC, Beasley NJ, Watson PH, et al. Hypoxiainducible expression of tumor-associated carbonic anhydrases. Cancer Res. 2000;60:7075–83.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Rolff.

Ethics declarations

Funding

None.

Conflict of Interest

J. Rolff, M. Becker, J. Hoffmann and I. Fichtner are employees of EPO Berlin-Buch GmbH. J. Merk declares no conflic of interest. All animals used were handled according to the Guidelines for the Welfare and Use of Animals in Cancer Research and according to the German Animal Protection Law, approved by the local responsible authorities.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rolff, J., Becker, M., Merk, J. et al. Preclinical Study of a Combination of Erlotinib and Bevacizumab in Early Stages of Unselected Non-Small Cell Lung Cancer Patient-Derived Xenografts. Targ Oncol 11, 507–514 (2016). https://doi.org/10.1007/s11523-015-0415-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11523-015-0415-4

Keywords

Navigation