Skip to main content
Log in

Multiclass motor imagery classification with Riemannian geometry and temporal-spectral selection

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Motor imagery (MI) based brain-computer interfaces (BCIs) decode the users’ intentions from electroencephalography (EEG) to achieve information control and interaction between the brain and external devices. In this paper, firstly, we apply Riemannian geometry to the covariance matrix extracted by spatial filtering to obtain robust and distinct features. Then, a multiscale temporal-spectral segmentation scheme is developed to enrich the feature dimensionality. In order to determine the optimal feature configurations, we utilize a linear learning-based temporal window and spectral band (TWSB) selection method to evaluate the feature contributions, which efficiently reduces the redundant features and improves the decoding efficiency without excessive loss of accuracy. Finally, support vector machines are used to predict the classification labels based on the selected MI features. To evaluate the performance of our model, we test it on the publicly available BCI Competition IV dataset 2a and 2b. The results show that the method has an average accuracy of 79.1% and 83.1%, which outperforms other existing methods. Using TWSB feature selection instead of selecting all features improves the accuracy by up to about 6%. Moreover, the TWSB selection method can effectively reduce the computational burden. We believe that the framework reveals more interpretable feature information of motor imagery EEG signals, provides neural responses discriminative with high accuracy, and facilitates the performance of real-time MI-BCI.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data is publicly available online.

References

  1. Ramadan RA, Vasilakos AV (2017) Brain computer interface: control signals review. Neurocomputing 223:26–44. https://doi.org/10.1016/j.neucom.2016.10.024

    Article  Google Scholar 

  2. Baniqued PDE, Stanyer EC, Awais M, Alazmani A, Jackson AE, Mon-Williams MA, Mushtaq F, Holt RJ (2021) Brain-computer interface robotics for hand rehabilitation after stroke: a systematic review. J NeuroEng Rehabil 18(1):15. https://doi.org/10.1186/s12984-021-00820-8

    Article  PubMed  PubMed Central  Google Scholar 

  3. Abiri R, Borhani S, Sellers EW, Jiang Y, Zhao X (2019) A comprehensive review of EEG-based brain-computer interface paradigms. J Neural Eng 16(1):011001. https://doi.org/10.1088/1741-2552/aaf12e

    Article  PubMed  Google Scholar 

  4. Phadikar S, Sinha N, Ghosh R (2023) Unsupervised feature extraction with autoencoders for EEG based multiclass motor imagery BCI. Expert Syst Appl 213:118901. https://doi.org/10.1016/j.eswa.2022.118901

    Article  Google Scholar 

  5. Kumar S, Sharma A (2018) A new parameter tuning approach for enhanced motor imagery EEG signal classification. Med Biol Eng Comput 56(10):1861–1874. https://doi.org/10.1007/s11517-018-1821-4

    Article  PubMed  Google Scholar 

  6. Pichiorri F, Morone G, Petti M, Toppi J, Pisotta I, Molinari M, Paolucci S, Inghilleri M, Astolfi L, Cincotti F, Mattia D (2015) Brain-computer interface boosts motor imagery practice during stroke recovery. Ann Neurol 77(5):851–865. https://doi.org/10.1002/ana.24390

    Article  PubMed  Google Scholar 

  7. Li H, Zhang D, Xie J (2023) MI-DABAN: a dual-attention-based adversarial network for motor imagery classification. Comput Biol Med 152:106420. https://doi.org/10.1016/j.compbiomed.2022.106420

    Article  PubMed  Google Scholar 

  8. Kappenman ES, Farrens JL, Zhang W, Stewart AX, Luck SJ (2021) ERP CORE: an open resource for human event-related potential research. Neuroimage 225:117465. https://doi.org/10.1016/j.neuroimage.2020.117465

    Article  PubMed  Google Scholar 

  9. Liu X, Xie Q, Lv J, Huang H, Wang W (2021) P300 event-related potential detection using one-dimensional convolutional capsule networks. Expert Syst Appl 174:114701. https://doi.org/10.1016/j.eswa.2021.114701

    Article  Google Scholar 

  10. Nakanishi M, Wang Y, Wang Y-T, Mitsukura Y, Jung T-P (2014) A high-speed brain speller using steady-state visual evoked potentials. Int J Neural Syst 24(6):1450019. https://doi.org/10.1142/s0129065714500191

    Article  PubMed  Google Scholar 

  11. Nakanishi M, Wang Y, Chen X, Wang Y-T, Gao X, Jung T-P (2018) Enhancing detection of SSVEPs for a high-speed brain speller using task-related component analysis. IEEE Trans Biomed Eng 65(1):104–112. https://doi.org/10.1109/tbme.2017.2694818

    Article  PubMed  Google Scholar 

  12. Al-Saegh A, Dawwd SA, Abdul-Jabbar JM (2021) Deep learning for motor imagery EEG-based classification: a review. Biomed Signal Process Control 63:102172. https://doi.org/10.1016/j.bspc.2020.102172

    Article  Google Scholar 

  13. Sadiq MT, Yu X, Yuan Z, Aziz MZ, Siuly S, Ding W (2022) A matrix determinant feature extraction approach for decoding motor and mental imagery EEG in subject-specific tasks. IEEE Trans Cognit Dev Syst 14(2):375–387. https://doi.org/10.1109/tcds.2020.3040438

    Article  Google Scholar 

  14. Zheng M, Yang B, Xie Y (2020) EEG classification across sessions and across subjects through transfer learning in motor imagery-based brain-machine interface system. Med Biol Eng Comput 58(7):1515–1528. https://doi.org/10.1007/s11517-020-02176-y

    Article  PubMed  Google Scholar 

  15. Liu GY, Tian L, Zhou WD (2022) Multiscale time-frequency method for multiclass motor imagery brain computer interface. Comput Biol Med 143:105299. https://doi.org/10.1016/j.compbiomed.2022.105299

    Article  PubMed  Google Scholar 

  16. Liu S, Fu W, Wei C, Ma F, Cui N, Shan X, Zhang Y (2022) Interference of unilateral lower limb amputation on motor imagery rhythm and remodeling of sensorimotor areas. Front Hum Neurosci 16:1011463. https://doi.org/10.3389/fnhum.2022.1011463

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gao L, Wang J, Chen L (2013) Event-related desynchronization and synchronization quantification in motor-related EEG by Kolmogorov entropy. J Neural Eng 10(3):036023. https://doi.org/10.1088/1741-2560/10/3/036023

    Article  PubMed  Google Scholar 

  18. Guggenberger R, Kraus D, Naros G, Leao MT, Ziemann U, Gharabaghi A (2018) Extended enhancement of corticospinal connectivity with concurrent cortical and peripheral stimulation controlled by sensorimotor desynchronization. Brain Stimulat 11(6):1331–1335. https://doi.org/10.1016/j.brs.2018.08.012

    Article  Google Scholar 

  19. Wu Y, Ge Y (2013) A novel method for motor imagery EEG adaptive classification based biomimetic pattern recognition. Neurocomputing 116:280–290. https://doi.org/10.1016/j.neucom.2012.03.030

    Article  Google Scholar 

  20. Fang H, Jin J, Daly I, Wang XY (2022) Feature extraction method based on filter banks and Riemannian tangent space in motor-imagery BCI. IEEE J Biomed Health Inf 26(6):2504–2514. https://doi.org/10.1109/jbhi.2022.3146274

    Article  Google Scholar 

  21. Talukdar U, Hazarika SM, Gan JQ (2020) Adaptive feature extraction in EEG-based motor imagery BCI: tracking mental fatigue. J Neural Eng 17(1):016020. https://doi.org/10.1088/1741-2552/ab53f1

    Article  PubMed  Google Scholar 

  22. Zhang Y, Nam CS, Zhou G, Jin J, Wang X, Cichocki A (2019) Temporally constrained sparse group spatial patterns for motor imagery BCI. IEEE Trans Cybern 49(9):3322–3332. https://doi.org/10.1109/tcyb.2018.2841847

    Article  PubMed  Google Scholar 

  23. Chen J, Leong YC, Honey CJ, Yong CH, Norman KA, Hasson U (2017) Shared memories reveal shared structure in neural activity across individuals. Nat Neurosci 20(1):115–125. https://doi.org/10.1038/nn.4450

    Article  CAS  PubMed  Google Scholar 

  24. Zhang J, Wang X, Xu B, Wu Y, Lou X, Shen X (2023) An overview of methods of left and right foot motor imagery based on Tikhonov regularisation common spatial pattern. Med Biol Eng Comput. https://doi.org/10.1007/s11517-023-02780-8

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wu S-L, Liu Y-T, Hsieh T-Y, Lin Y-Y, Chen C-Y, Chuang C-H, Lin C-T (2017) Fuzzy integral with particle swarm optimization for a motor-imagery-based brain-computer interface. IEEE Trans Fuzzy Syst 25(1):21–28. https://doi.org/10.1109/tfuzz.2016.2598362

    Article  Google Scholar 

  26. Ang KK, Chin ZY, Wang C, Guan C, Zhang H (2012) Filter bank common spatial pattern algorithm on BCI competition IV datasets 2a and 2b. Front Neurosci 6:39. https://doi.org/10.3389/fnins.2012.00039

    Article  PubMed  PubMed Central  Google Scholar 

  27. Sakhavi S, Guan C, Yan S (2018) Learning temporal information for brain-computer interface using convolutional neural networks. IEEE Trans Neural Networks Learn Syst 29(11):5619–5629. https://doi.org/10.1109/tnnls.2018.2789927

    Article  Google Scholar 

  28. McGinley MJ, Vinck M, Reimer J, Batista-Brito R, Zagha E, Cadwell CR, Tolias AS, Cardin JA, McCormick DA (2015) Waking state: rapid variations modulate neural and behavioral responses. Neuron 87(6):1143–1161. https://doi.org/10.1016/j.neuron.2015.09.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Peterson V, Wyser D, Lambercy O, Spies R, Gassert R (2019) A penalized time-frequency band feature selection and classification procedure for improved motor intention decoding in multichannel EEG. J Neural Eng 16(1):016019. https://doi.org/10.1088/1741-2552/aaf046

    Article  PubMed  Google Scholar 

  30. Dennis EL, Thompson PM (2014) Functional brain connectivity using fMRI in aging and Alzheimerʼs disease. Neuropsychol Rev 24(1):49–62. https://doi.org/10.1007/s11065-014-9249-6

    Article  PubMed  PubMed Central  Google Scholar 

  31. Rivet B, Souloumiac A, Attina V, Gibert G (2009) xDAWN algorithm to enhance evoked potentials: application to brain-computer interface. IEEE Trans Biomed Eng 56(8):2035–2043. https://doi.org/10.1109/tbme.2009.2012869

    Article  PubMed  Google Scholar 

  32. Yang B, Zhang T, Zhang Y, Liu W, Wang J, Duan K (2017) Removal of electrooculogram artifacts from electroencephalogram using canonical correlation analysis with ensemble empirical mode decomposition. Cogn Comput 9(5):626–633. https://doi.org/10.1007/s12559-017-9478-0

    Article  Google Scholar 

  33. Lotte F, Bougrain L, Cichocki A, Clerc M, Congedo M, Rakotomamonjy A, Yger F (2018) A review of classification algorithms for EEG-based brain-computer interfaces: a 10 year update. J Neural Eng 15(3):031005. https://doi.org/10.1088/1741-2552/aab2f2

    Article  CAS  PubMed  Google Scholar 

  34. Yger F, Berar M, Lotte F (2017) Riemannian approaches in brain-computer interfaces: a review. IEEE Trans Neural Syst Rehabil Eng 25(10):1753–1762. https://doi.org/10.1109/tnsre.2016.2627016

    Article  PubMed  Google Scholar 

  35. Barachant A, Bonnet S, Congedo M, Jutten C (2013) Classification of covariance matrices using a Riemannian-based kernel for BCI applications. Neurocomputing 112:172–178. https://doi.org/10.1016/j.neucom.2012.12.039

    Article  Google Scholar 

  36. He H, Wu D (2020) Transfer learning for brain-computer interfaces: a Euclidean space data alignment approach. IEEE Trans Biomed Eng 67(2):399–410. https://doi.org/10.1109/tbme.2019.2913914

    Article  PubMed  Google Scholar 

  37. Barachant A, Bonnet S, Congedo M, Jutten C (2012) Multiclass brain-computer interface classification by Riemannian geometry. IEEE Trans Biomed Eng 59(4):920–928. https://doi.org/10.1109/tbme.2011.2172210

    Article  PubMed  Google Scholar 

  38. Nguyen CH, Artemiadis P (2018) EEG feature descriptors and discriminant analysis under Riemannian Manifold perspective. Neurocomputing 275:1871–1883. https://doi.org/10.1016/j.neucom.2017.10.013

    Article  Google Scholar 

  39. Tangermann M, Mueller K-R, Aertsen A, Birbaumer N, Braun C, Brunner C, Leeb R, Mehring C, Miller KJ, Mueller-Putz GR, Nolte G, Pfurtscheller G, Preissl H, Schalk G, Schoegl A, Vidaurre C, Waldert S, Blankertz B (2012) Review of the BCI competition IV. Front Neurosci 6:55. https://doi.org/10.3389/fnins.2012.00055

    Article  PubMed  PubMed Central  Google Scholar 

  40. Brunner C, Leeb R, Müller-Putz G, Schlögl A, Pfurtscheller G (2008) BCI Competition 2008–Graz data set A. Institute for Knowledge Discovery (Laboratory of Brain-Computer Interfaces), Graz University of Technology 16:1-6

  41. Bauer R, Fels M, Vukelic M, Ziemann U, Gharabaghi A (2015) Bridging the gap between motor imagery and motor execution with a brain-robot interface. Neuroimage 108:319–327. https://doi.org/10.1016/j.neuroimage.2014.12.026

    Article  PubMed  Google Scholar 

  42. Yang Y, Chevallier S, Wiart J, Bloch I (2017) Subject-specific time-frequency selection for multi-class motor imagery-based BCIs using few Laplacian EEG channels. Biomed Signal Process Control 38:302–311. https://doi.org/10.1016/j.bspc.2017.06.016

    Article  Google Scholar 

  43. Malan NS, Sharma S (2021) Time window and frequency band optimization using regularized neighbourhood component analysis for Multi-View Motor Imagery EEG classification. Biomed Signal Process Control 67:102550. https://doi.org/10.1016/j.bspc.2021.102550

    Article  Google Scholar 

  44. Ma X, Chen W, Pei Z, Liu J, Huang B, Chen J (2023) A temporal dependency learning CNN with attention mechanism for MI-EEG decoding. IEEE Trans Neural Syst Rehabil Eng 31:3188–3200. https://doi.org/10.1109/tnsre.2023.3299355

    Article  PubMed  Google Scholar 

  45. Bennett JD, John SE, Grayden DB, Burkitt AN (2021) A neurophysiological approach to spatial filter selection for adaptive brain-computer interfaces. J Neural Eng 18(2):026017. https://doi.org/10.1088/1741-2552/abd51f

    Article  Google Scholar 

  46. Miao M, Wang A, Liu F (2018) Application of artificial bee colony algorithm in feature optimization for motor imagery EEG classification. Neural Comput Appl 30(12):3677–3691. https://doi.org/10.1007/s00521-017-2950-7

    Article  Google Scholar 

  47. Tugin S, Hernandez-Pavon JC, Ilmoniemi RJ, Nikulin VV (2016) Visual deviant stimuli produce mismatch responses in the amplitude dynamics of neuronal oscillations. Neuroimage 142:645–655. https://doi.org/10.1016/j.neuroimage.2016.07.024

    Article  PubMed  Google Scholar 

  48. Hassani A, Bertrand A, Moonen M (2016) GEVD-based low-rank approximation for distributed adaptive node-specific signal estimation in wireless sensor networks. IEEE Trans Signal Process 64(10):2557–2572. https://doi.org/10.1109/tsp.2015.2510973

    Article  Google Scholar 

  49. Evert E, Vandecappelle M, De Lathauwer L (2022) Canonical polyadic decomposition via the generalized Schur Decomposition. IEEE Signal Process Lett 29:937–941. https://doi.org/10.1109/lsp.2022.3156870

    Article  Google Scholar 

  50. Kalaganis FP, Laskaris NA, Oikonomou VP, Nikopolopoulos S, Kompatsiaris I (2022) Revisiting Riemannian geometry-based EEG decoding through approximate joint diagonalization. J Neural Eng 19(6):066030. https://doi.org/10.1088/1741-2552/aca4fc

    Article  Google Scholar 

  51. Hersche M, Rellstab T, Schiavone P D, Cavigelli L, Benini L, Rahimi A, Ieee 2018 Fast and accurate multiclass inference for MI-BCIs using large multiscale temporal and spectral features. In: European Signal Processing Conference (EUSIPCO), ed M Hersche, et al. (Rome, ITALY pp 1690–1694

  52. Moakher M (2005) A differential geometric approach to the geometric mean of symmetric positive-definite matrices. SIAM J Matrix Anal Appl 26(3):735–747. https://doi.org/10.1137/s0895479803436937

    Article  Google Scholar 

  53. Navickas Z, Telksnys T, Timofejeva I, Marcinkevicius R, Ragulskis M (2018) An operator-based approach for the construction of closed-form solutions to fractional differential equations. Math Model Anal 23(4):665–685. https://doi.org/10.3846/mma.2018.040

    Article  Google Scholar 

  54. Jin J, Miao Y, Daly I, Zuo C, Hu D, Cichocki A (2019) Correlation-based channel selection and regularized feature optimization for MI-based BCI. Neural Netw 118:262–270. https://doi.org/10.1016/j.neunet.2019.07.008

    Article  PubMed  Google Scholar 

  55. Li X, Zhu C, Xu C, Zhu J, Li Y, Wu S (2020) VR motion sickness recognition by using EEG rhythm energy ratio based on wavelet packet transform. Comput Methods Programs Biomed 188:105266. https://doi.org/10.1016/j.cmpb.2019.105266

    Article  PubMed  Google Scholar 

  56. Yan W, Zhao M, Fu Z, Pearlson GD, Sui J, Calhoun VD (2022) Mapping relationships among schizophrenia, bipolar and schizoaffective disorders: a deep classification and clustering framework using fMRI time series. Schizophr Res 245:141–150. https://doi.org/10.1016/j.schres.2021.02.007

    Article  PubMed  Google Scholar 

  57. Meyer BH, Ramirez Pozo AT, Nunan Zola WM (2022) Global and local structure preserving GPU t-SNE methods for large-scale applications. Expert Syst Appl 201:116918. https://doi.org/10.1016/j.eswa.2022.116918

    Article  Google Scholar 

  58. Izzuddin TA, Safri NM, Othman MA (2021) Compact convolutional neural network (CNN) based on SincNet for end-to-end motor imagery decoding and analysis. Biocybern Biomed Eng 41(4):1629–1645. https://doi.org/10.1016/j.bbe.2021.10.0010168-8227

    Article  Google Scholar 

  59. She Q, Hu B, Luo Z, Nguyen T, Zhang Y (2019) A hierarchical semi-supervised extreme learning machine method for EEG recognition. Med Biol Eng Comput 57:147–157. https://doi.org/10.1007/s11517-018-1875-3

    Article  PubMed  Google Scholar 

  60. Wang J, Yao L, Wang Y (2023) IFNet: an interactive frequency convolutional neural network for enhancing motor imagery decoding from EEG. IEEE Trans Neural Syst Rehabil Eng 31:1900–1911. https://doi.org/10.1109/TNSRE.2023.3257319

    Article  PubMed  Google Scholar 

  61. Luo T-j (2023) Parallel genetic algorithm based common spatial patterns selection on time-frequency decomposed EEG signals for motor imagery brain-computer interface. Biomed Signal Process Control 80:104397. https://doi.org/10.1016/j.bspc.2022.104397

    Article  Google Scholar 

  62. Lawhern VJ, Solon AJ, Waytowich NR, Gordon SM, Hung CP, Lance BJ (2018) EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces. J Neural Eng 15(5):056013. https://doi.org/10.1088/1741-2552/aace8c

    Article  PubMed  Google Scholar 

  63. Ha K-W, Jeong J-W, Ieee 2019 Decoding two-class motor imagery EEG with capsule networks. In: IEEE International Conference on Big Data and Smart Computing (BigComp), (Kyoto, JAPAN pp 387–390

  64. Zheng Q, Zhu F, Heng P-A (2018) Robust support matrix machine for single trial EEG classification. IEEE Trans Neural Syst Rehabil Eng 26(3):551–562. https://doi.org/10.1109/tnsre.2018.2794534

    Article  PubMed  Google Scholar 

  65. Molla MKI, Al Shiam A, Islam MR, Tanaka T (2020) Discriminative feature selection-based motor imagery classification using EEG signal. IEEE Access 8:98255–98265. https://doi.org/10.1109/access.2020.2996685

    Article  Google Scholar 

  66. Zhang W, Song A, Zeng H, Xu B, Miao M (2022) The effects of bilateral phase-dependent closed-loop vibration stimulation with motor imagery paradigm. IEEE Trans Neural Syst Rehabil Eng 30:2732–2742. https://doi.org/10.1109/tnsre.2022.3208312

    Article  PubMed  Google Scholar 

  67. Rim B, Sung N-J, Min S, Hong M (2020) Deep learning in physiological signal data: a survey. Sensors 20(4):969. https://doi.org/10.3390/s20040969

    Article  PubMed  PubMed Central  Google Scholar 

  68. Janani A, Sasikala M, Chhabra H, Shajil N, Venkatasubramanian G (2020) Investigation of deep convolutional neural network for classification of motor imagery fNIRS signals for BCI applications. Biomed Signal Process Control 62:102133. https://doi.org/10.1016/j.bspc.2020.102133

    Article  Google Scholar 

  69. Schirrmeister RT, Springenberg JT, Fiederer LDJ, Glasstetter M, Eggensperger K, Tangermann M, Hutter F, Burgard W, Ball T (2017) Deep learning with convolutional neural networks for EEG decoding and visualization. Hum Brain Mapp 38(11):5391–5420. https://doi.org/10.1002/hbm.23730

    Article  PubMed  PubMed Central  Google Scholar 

  70. Zhao H, Zheng Q, Ma K, Li H, Zheng Y (2021) Deep representation-based domain adaptation for nonstationary EEG classification. IEEE Trans Neural Networks Learn Syst 32(2):535–545. https://doi.org/10.1109/tnnls.2020.3010780

    Article  Google Scholar 

  71. Al-Saegh A, Dawwd SA, Abdul-Jabbar JM (2021) CutCat: an augmentation method for EEG classification. Neural Netw 141:433–443. https://doi.org/10.1016/j.neunet.2021.05.032

    Article  PubMed  Google Scholar 

  72. Zhang S, Yao L, Sun A, Tay Y (2019) Deep learning based recommender system: a survey and new perspectives. ACM Comput Surv 52(1):5. https://doi.org/10.1145/3285029

    Article  Google Scholar 

  73. Tang X, Zhang N, Zhou J, Liu Q (2017) Hidden-layer visible deep stacking network optimized by PSO for motor imagery EEG recognition. Neurocomputing 234:1–10. https://doi.org/10.1016/j.neucom.2016.12.039

    Article  Google Scholar 

  74. Zhang L, Wen D, Li C, Zhu R (2020) Ensemble classifier based on optimized extreme learning machine for motor imagery classification. J Neural Eng 17(2):026004. https://doi.org/10.1088/1741-2552/ab7264

    Article  PubMed  Google Scholar 

Download references

Funding

We acknowledge the support of the National Natural Science Foundation of China (grant number 61971374, 62073280), the Key Research and Development Project of Hebei Province (grant number 23372006D), and the Hebei Key Laboratory Project (grant number 202250701010046).

Author information

Authors and Affiliations

Authors

Contributions

Zhaohui Li: conceptualization, formal analysis, investigation, writing — original draft, writing — review and editing. Xiaohui Tan: formal analysis, methodology, software, writing — original draft. Xinyu Li: validation, visualization, writing — review and editing. Liyong Yin: conceptualization, writing — review and editing.

Corresponding author

Correspondence to Liyong Yin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Tan, X., Li, X. et al. Multiclass motor imagery classification with Riemannian geometry and temporal-spectral selection. Med Biol Eng Comput (2024). https://doi.org/10.1007/s11517-024-03103-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11517-024-03103-1

Keywords

Navigation