Skip to main content

Advertisement

Log in

A conformal regressor for predicting negative conversion time of Omicron patients

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

In light of the situation and the characteristics of Omicron, the country has continuously optimized the rules for the prevention and control of COVID-19. The global epidemic is still spreading, and new cases of infection continue to emerge in China. To facilitate the infected person to estimate the course of virus infection, a prediction model for predicting negative conversion time is proposed in this article. The clinical features of Omicron-infected patients in Shandong Province in the first half of 2022 are retrospectively studied. These features are grouped by disease diagnosis result, clinical sign, traditional Chinese medicine symptoms, and drug use. These features are input to the eXtreme Gradient Boosting (XGBoost) model, and the output is the predicted number of negative conversion days. At the same time, XGBoost is used as the underlying algorithm of the conformal prediction (CP) framework, which can realize the probability interval estimation with a controllable error rate. The results show that the proposed model has a mean absolute error of 3.54 days and has the shortest interval prediction result. This shows that the method in this paper can carry more decision-making information and help people better understand the disease and self-estimate the course of the disease to a certain extent.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Algorithm 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Callaway E, Ledford H et al (2021) How bad is Omicron? What Sci Know Nat 600(7888):197–199. https://doi.org/10.1126/science.acx9782

    Article  CAS  Google Scholar 

  2. Thakur V, Ratho RK (2022) OMICRON (B. 1.1. 529): a new SARS-CoV-2 variant of concern mounting worldwide fear. J Med Virol 94(5):1821–1824. https://doi.org/10.1002/jmv.27541

    Article  CAS  PubMed  Google Scholar 

  3. Shao J, Fan R, Hu J, Zhang T, Lee C, Huang X, Wang F, Liang H, Jin Y, Jiang Y et al (2022) Clinical progression and outcome of hospitalized patients infected with SARS-CoV-2 Omicron variant in shanghai, china. Vaccines 10(9):1409. https://doi.org/10.3390/vaccines10091409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fan Y, Li X, Zhang L, Wan S, Zhang L, Zhou F (2022) SARS-CoV-2 Omicron variant: recent progress and future perspectives. Signal Transduct Target Ther 7(1):1–11. https://doi.org/10.1038/s41392-022-00997-x

    Article  CAS  Google Scholar 

  5. Tian D, Sun Y, Xu H, Ye Q (2022) The emergence and epidemic characteristics of the highly mutated SARS-CoV-2 Omicron variant. J Med Virol 94(6):2376–2383. https://doi.org/10.1002/jmv.27643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Martin-Blondel G, Marcelin AG, Souli´e C, Kaisaridi S, Lusivika Nzinga C, Zafilaza K, Dorival C, Nailler L, Boston A, Ronchetti AM, et al. (2022) Time to negative PCR conversion amongst high-risk patients with mild-to-moderate Omicron BA. 1 and BA. 2 COVID-19 treated with sotrovimab or nirmatrelvir. Clinical Microbiology and Infection. https://doi.org/10.1016/j.cmi.2022.12.016

  7. Ye J, Shao X, Yang Y, Zhu F (2023) Predicting the negative conversion time of nonsevere COVID-19 patients using machine learning methods. J Med Virol 95(4):e28747

    Article  CAS  PubMed  Google Scholar 

  8. Han Z, Wei B, Hong Y, Li T, Cong J, Zhu X, Wei H, Zhang W (2020) Accurate screening of COVID-19 using attention-based deep 3D multiple instance learning. IEEE Trans Med Imaging 39(8):2584–2594. https://doi.org/10.1109/TMI.2020.2996256

    Article  PubMed  Google Scholar 

  9. Liu G, Liao Y, Wang F, Zhang B, Zhang L, Liang X, Wan X, Li S, Li Z, Zhang S et al (2021) Medical-vlbert: medical visual language bert for COVID -19 CT report generation with alternate learning. IEEE Trans Neural Net Learn Syst 32(9):3786–3797. https://doi.org/10.1109/TNNLS.2021.3099165

    Article  ADS  Google Scholar 

  10. Saygılı A (2021) A new approach for computer-aided detection of coronavirus (COVID-19) from CT and X-ray images using machine learning methods. Appl Soft Comput 105:107323. https://doi.org/10.1016/j.asoc.2021.107323

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sun Y, Cong J, Zhang K, Jian M, Wei B (2023) Unsupervised medical image feature learning by using de-melting reduction auto-encoder. Neurocomputing 523:145–156. https://doi.org/10.1016/j.neucom.2022.12.017

    Article  Google Scholar 

  12. Nurkholis F, Wibisono BH, Suryanto A, Handoyo T, Farida F, Tanamas J (2022) Factors influencing the delay in negative conversion of pcr swab test results in patients with COVID-19. Medica Hospitalia. J Clin Med 9(2):199–206

    Google Scholar 

  13. Liu Y, Li H, Luo T, Zhang C, Xiao Z, Wei Y, Gao Y, Shi F, Shan F, Shen D (2022) Structural attention graph neural network for diagnosis and prediction of COVID-19 severity. IEEE Trans Med Imaging. https://doi.org/10.1109/tmi.2022.3226575

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zoabi Y, Deri-Rozov S, Shomron N (2021) Machine learning-based prediction of COVID-19 diagnosis based on symptoms. npj digital medicine 4(1):1–5. https://doi.org/10.1038/s41746-020-00372-6

    Article  Google Scholar 

  15. Vovk V, Gammerman A, Shafer G (2005) Algorithmic learning in a random world. Springer, New York

  16. Balasubramanian V, Ho SS, Vovk V (2014) Conformal prediction for reliable machine learning: theory, adaptations and applications. Newnes

    Google Scholar 

  17. Shafer G, Vovk V (2008) A tutorial on conformal prediction. J Mach Learn Res 9:371–421

    MathSciNet  Google Scholar 

  18. Wang D, Wang P, Shi J (2018) A fast and efficient conformal regressor with regularized extreme learning machine. Neurocomputing 304:1–11. https://doi.org/10.1016/j.neucom.2018.04.012

    Article  Google Scholar 

  19. Wang D, Wang P, Yuan Y, Wang P, Shi J (2020) A fast conformal predictive system with regularized extreme learning machine. Neural Netw 126:347–361. https://doi.org/10.1016/j.neunet.2020.03.022

    Article  PubMed  Google Scholar 

  20. Chen T, Guestrin C (2016) Xgboost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 785–794. https://doi.org/10.1145/2939672.2939785

  21. Ferreira AJ, Figueiredo MA (2012) Boosting algorithms: a review of methods, theory, and applications. Ensemble Mach Learn 35–85. https://doi.org/10.1007/978-1-4419-9326-7_2

  22. Ogunleye A, Wang QG (2019) Xgboost model for chronic kidney disease diagnosis. IEEE/ACM Trans Comput Biol Bioinf 17(6):2131–2140. https://doi.org/10.1109/TCBB.2019.2911071

    Article  Google Scholar 

  23. Zhang X, Yan C, Gao C, Malin BA, Chen Y (2020) Predicting missing values in medical data via XGBoost regression. J Healthcare Inform Res 4(4):383–394. https://doi.org/10.1007/s41666-020-00077-1

    Article  Google Scholar 

  24. Yun H, Choi J, Park JH et al (2021) Prediction of critical care outcome for adult patients presenting to emergency department using initial triage information: an XGBoost algorithm analysis. JMIR Med Inform 9(9):e30770. https://doi.org/10.2196/30770

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zg F, Sq Y, Cx Lv, An Sy WuW (2022) Application of a data-driven XGBoost model for the prediction of COVID-19 in the USA: a time-series study. BMJ Open 12(7):e056685. https://doi.org/10.1136/bmjopen-2021-056685

    Article  Google Scholar 

  26. Papadopoulos H (2008) Inductive conformal prediction: theory and application to neural networks. In: Tools in artificial intelligence, Citeseer. https://doi.org/10.5772/6078

  27. Papadopoulos H, Haralambous H (2011) Reliable prediction intervals with regression neural networks. Neural Netw 24(8):842–851. https://doi.org/10.1016/j.neunet.2011.05.008

    Article  PubMed  Google Scholar 

  28. Vovk V (2015) Cross-conformal predictors. Ann Math Artif Intell 74(1–2):9–28. https://doi.org/10.1007/s10472-013-9368-4

    Article  MathSciNet  Google Scholar 

  29. Lei J, G’Sell M, Rinaldo A, Tibshirani RJ, Wasserman L (2018) Distribution-free predictive inference for regression. J Am Stat Assoc 113(523):1094–1111. https://doi.org/10.1080/01621459.2017.1307116

    Article  MathSciNet  CAS  Google Scholar 

  30. Chernozhukov V, Wuthrich K, Zhu Y (2021) Distributional conformal prediction. Proc Natl Acad Sci 118(48):e2107794118. https://doi.org/10.1073/pnas.2107794118

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang P, Wang P, Wang D, Xue B (2021) A conformal regressor with random forests for tropical cyclone intensity estimation. IEEE Trans Geosci Remote Sens 60:1–14. https://doi.org/10.1109/TGRS.2021.3139930

    Article  Google Scholar 

  32. Sunnetci KM, Alkan A (2022) Biphasic majority voting-based comparative COVID-19 diagnosis using chest X-ray images. Expert Systems with Applications p 119430

  33. Gupta K, Bajaj V (2023) Deep learning models-based CT-scan image classification for automated screening of COVID-19. Biomed Signal Process Control 80:104268

    Article  PubMed  Google Scholar 

  34. Ulukaya S, Sarıca AA, Erdem O, Karaali A (2023) MSCCov19Net: multi-branch deep learning model for COVID-19 detection from cough sounds. Med Biol Eng Comput 61:1619–1629. https://doi.org/10.1007/s11517-023-02803-4

    Article  PubMed  Google Scholar 

  35. De Myttenaere A, Golden B, Le Grand B, Rossi F (2016) Mean absolute percentage error for regression models. Neurocomputing 192:38–48

    Article  Google Scholar 

  36. Chai T, Draxler RR (2014) Root mean square error (RMSE) or mean absolute error (MAE). Geosci Model Dev Dis 7(1):1525–1534

    Google Scholar 

  37. Walther BA, Moore JL (2005) The concepts of bias, precision and accuracy, and their use in testing the performance of species richness estimators, with a literature review of estimator performance. Ecography 28(6):815–829

    Article  ADS  Google Scholar 

  38. Alkan A, Abdullah MU, Abdullah HO, Assaf M, Zhou H (2021) A smart agricultural application: automated detection of diseases in vine leaves usinghybrid deep learning. Turkish J Agric Forest 45(6):717–729

    Article  Google Scholar 

  39. Breiman L (2001) Random forests. Mach Learn 45:5–32

    Article  Google Scholar 

  40. Car Z, Baressi Šegota S, Anđelić N, Lorencin I, Mrzljak V et al (2020) Modeling the spread of COVID-19 infection using a multilayer perceptron. Comput Math Methods Med 2020:5714714. https://doi.org/10.1155/2020/5714714

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work is supported by the Introduction and Cultivation Program for Young Creative Talents in Colleges and Universities of Shandong Province (No. 2019–173) and the Natural Science Foundation of Shandong Province (No. ZR2020KF013, No. ZR2020QF043, No. ZR2022QG051, No. ZR2023QF094).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Zhang or Benzheng Wei.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Wu, S., Tian, M. et al. A conformal regressor for predicting negative conversion time of Omicron patients. Med Biol Eng Comput (2024). https://doi.org/10.1007/s11517-024-03029-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11517-024-03029-8

Keywords

Navigation