Skip to main content
Log in

Repetitive transcranial magnetic stimulation (rTMS) as a tool for cognitive enhancement in healthy adults: a review study

  • Review Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

As human beings, we have always sought to expand on our abilities, including our cognitive and motor skills. One of the still-underrated tools employed to this end is repetitive transcranial magnetic stimulation (rTMS). Until recently, rTMS was almost exclusively used in studies with rehabilitation purposes. Only a small strand of literature has focused on the application of rTMS on healthy people with the aim of enhancing cognitive abilities such as decision-making, working memory, attention, source memory, cognitive control, learning, computational speed, risk-taking, and impulsive behaviors. It, therefore, seems that the findings in this particular field are the indirect results of rehabilitation research. In this review paper, we have set to investigate such studies and evaluate the rTMS effectuality in terms of how it improves the cognitive skills in healthy subjects. Furthermore, since the most common brain site used for rTMS protocols is the dorsolateral prefrontal cortex (DLPFC), we have added theta burst stimulation (TBS) wave patterns that are similar to brain patterns to increase the effectiveness of this method. The results of this study can help people who have high-risk jobs including firefighters, surgeons, and military officers with their job performance.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Stahnisch FW (2015) History of neuroscience and neuroethics: introduction. In: Clausen J, Levy N (eds) Handbook of neuroethics. Springer, Dordrecht, pp 461–466. https://doi.org/10.1007/978-94-007-4707-4

    Chapter  Google Scholar 

  2. Emerson RW, Adams C, Nishino T et al (2017) Functional neuroimaging of high-risk 6-month-old infants predicts a diagnosis of autism at 24 months of age. Sci Transl Med 9:eaag2882. https://doi.org/10.1126/scitranslmed.aag2882

    Article  PubMed  PubMed Central  Google Scholar 

  3. Flanagan SR, Cantor JB, Ashman TA (2008) Traumatic brain injury: future assessment tools and treatment prospects. Neuropsychiatr Dis Treat 4:877–892. https://doi.org/10.2147/ndt.s1985

    Article  PubMed  PubMed Central  Google Scholar 

  4. Coulter J (1983) Rethinking cognitive theory. Rethink Cogn Theory. https://doi.org/10.1007/978-1-349-06706-0

    Article  Google Scholar 

  5. Sahakian BJ, Morein-Zamir S (2011) Neuroethical issues in cognitive enhancement. J Psychopharmacol 25:197–204. https://doi.org/10.1177/0269881109106926

    Article  PubMed  Google Scholar 

  6. Hogarty GE, Flesher S, Ulrich R et al (2004) Cognitive enhancement therapy for schizophrenia: effects of a 2-year randomized trial on cognition and behavior. Arch Gen Psychiatry 61:866–876. https://doi.org/10.1001/archpsyc.61.9.866

    Article  PubMed  Google Scholar 

  7. Snowball A, Tachtsidis I, Popescu T et al (2013) Long-term enhancement of brain function and cognition using cognitive training and brain stimulation. Curr Biol 23:987–992. https://doi.org/10.1016/j.cub.2013.04.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bostrom N, Sandberg A (2009) Cognitive enhancement: methods, ethics, regulatory challenges. Sci Eng Ethics 15:311–341. https://doi.org/10.1007/s11948-009-9142-5

    Article  PubMed  Google Scholar 

  9. McKendrick R, Ayaz H, Olmstead R, Parasuraman R (2014) Enhancing dual-task performance with verbal and spatial working memory training: continuous monitoring of cerebral hemodynamics with NIRS. Neuroimage 85:1014–1026. https://doi.org/10.1016/j.neuroimage.2013.05.103

    Article  CAS  PubMed  Google Scholar 

  10. McKendrick R, Parasuraman R, Ayaz H (2015) Wearable functional near infrared spectroscopy (fNIRS) and transcranial direct current stimulation (tDCS): expanding vistas for neurocognitive augmentation. Front Syst Neurosci 9:27. https://doi.org/10.3389/fnsys.2015.00027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bruce Luber P, Sarah H, Lisanby M (2012) Enhancement of human cognitive performance using transcranial magnetic stimulation (TMS). Neuroimage 23:1–7

    Google Scholar 

  12. Fitzgerald PB, Fountain S, Daskalakis ZJ (2006) A comprehensive review of the effects of rTMS on motor cortical excitability and inhibition. Clin Neurophysiol 117:2584–2596. https://doi.org/10.1016/j.clinph.2006.06.712

    Article  PubMed  Google Scholar 

  13. Ebrahimzadeh E, Fayaz F, Rajabion L et al (2023) Machine learning approaches and non-linear processing of extracted components in frontal region to predict rTMS treatment response in major depressive disorder. Front Syst Neurosci 17:919977. https://doi.org/10.3389/fnsys.2023.919977

    Article  PubMed  PubMed Central  Google Scholar 

  14. Terao Y, Ugawa Y (2002) Basic mechanisms of TMS. J Clin Neurophysiol 19:322–343. https://doi.org/10.1097/00004691-200208000-00006

    Article  PubMed  Google Scholar 

  15. Rossini PM, Rossi S (2007) Transcranial magnetic stimulation: diagnostic, therapeutic, and research potential. Neurology 68:484–488. https://doi.org/10.1212/01.wnl.0000250268.13789.b2

    Article  PubMed  Google Scholar 

  16. Ridding MC, Brouwer B, Miles TS et al (2000) Changes in muscle responses to stimulation of the motor cortex induced by peripheral nerve stimulation in human subjects. Exp Brain Res 131:135–143. https://doi.org/10.1007/s002219900269

    Article  CAS  PubMed  Google Scholar 

  17. Ebrahimzadeh E, Alavi SM (2013) Implementation and Designing of Lie-Detection System Based on Electroencephalography (EEG). HBI_Journals 11(1):20–26

    Google Scholar 

  18. Guse B, Falkai P, Gruber O et al (2013) The effect of long-term high frequency repetitive transcranial magnetic stimulation on working memory in schizophrenia and healthy controls-a randomized placebo-controlled, double-blind fMRI study. Behav Brain Res 237:300–307. https://doi.org/10.1016/j.bbr.2012.09.034

    Article  PubMed  Google Scholar 

  19. O’Reardon JP, Solvason HB, Janicak PG et al (2010) Reply regarding “Efficacy and safety of transcranial magnetic stimulation in the acute treatment of major depression: a multisite randomized controlled trial.” Biol Psychiatry 67:e15–e17. https://doi.org/10.1016/j.biopsych.2009.06.027

    Article  PubMed  Google Scholar 

  20. Waldowski K, Seniów J, Leśniak M et al (2012) Effect of low-frequency repetitive transcranial magnetic stimulation on naming abilities in early-stroke aphasic patients: a prospective, randomized, double-blind sham-controlled study. Sci World J 2012. https://doi.org/10.1100/2012/518568

  21. Song S, Sandrini M, Cohen LG (2011) Modifying somatosensory processing with non-invasive brain stimulation. Restor Neurol Neurosci 29:427–437. https://doi.org/10.3233/RNN-2011-0614

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kuffler DP (2018) Coping with phantom limb pain. Mol Neurobiol 55:70–84. https://doi.org/10.1007/s12035-017-0718-9

    Article  CAS  PubMed  Google Scholar 

  23. Elahi B, Elahi B, Chen R (2009) Effect of transcranial magnetic stimulation on parkinson motor function - systematic review of controlled clinical trials. Mov Disord 24:357–363. https://doi.org/10.1002/mds.22364

    Article  PubMed  Google Scholar 

  24. Slotema CW, Blom JD, Hoek HW, Sommer IEC (2010) Should we expand the toolbox of psychiatric treatment methods to include repetitive transcranial magnetic stimulation (rTMS)? A meta-analysis of the efficacy of rTMS in psychiatric disorders. J Clin Psychiatry 71:873–884. https://doi.org/10.4088/JCP.08m04872gre

    Article  PubMed  Google Scholar 

  25. Nikravan M, Ebrahimzadeh E (2021) Time-frequency analysis in EEG for the treatment of major depressive disorder using rTMS. 2021 Asia-Pacific International Symposium on Electromagnetic Compatibility. https://doi.org/10.1109/APEMC49932.2021.9597080

    Chapter  Google Scholar 

  26. Clark C, Cole J, Winter C et al (2015) A review of transcranial magnetic stimulation as a treatment for post-traumatic stress disorder. Curr Psychiatry Rep 17:1–9. https://doi.org/10.1007/s11920-015-0621-x

    Article  Google Scholar 

  27. Koechlin E, Basso G, Pietrini P et al (1999) The role of the anterior prefrontal cortex in human cognition. Nature 399:148–151. https://doi.org/10.1038/20178

    Article  CAS  PubMed  ADS  Google Scholar 

  28. Ebrahimzadeh E, Soltanian-Zadeh H, Nadjar Araabi B (2019) Localization of Epileptic Focus Using Simultaneously Acquired EEG-FMRI Data. Comput Intel Elec Eng 9(2):15–28

    Google Scholar 

  29. Antczak J, Kowalska K, Klimkowicz-Mrowiec A et al (2018) Repetitive transcranial magnetic stimulation for the treatment of cognitive impairment in frontotemporal dementia: an open-label pilot study. Neuropsychiatr Dis Treat 14:749–755. https://doi.org/10.2147/NDT.S153213

    Article  PubMed  PubMed Central  Google Scholar 

  30. Vanderhasselt MA, De Raedt R, Baeken C et al (2007) The influence of rTMS over the right dorsolateral prefrontal cortex on top-down attentional processes. Brain Res 1137:111–116. https://doi.org/10.1016/j.brainres.2006.12.050

    Article  CAS  PubMed  Google Scholar 

  31. Vanderhasselt MA, De Raedt R, Baeken C et al (2006) The influence of rTMS over the left dorsolateral prefrontal cortex on Stroop task performance. Exp Brain Res 169:279–282. https://doi.org/10.1007/s00221-005-0344-z

    Article  PubMed  Google Scholar 

  32. Nadeau SE, Bowers D, Jones TL et al (2014) Cognitive effects of treatment of depression with repetitive transcranial magnetic stimulation. Cogn Behav Neurol 27:77–87

    Article  PubMed  Google Scholar 

  33. Bagherzadeh Y, Khorrami A, Zarrindast MR et al (2016) Repetitive transcranial magnetic stimulation of the dorsolateral prefrontal cortex enhances working memory. Exp Brain Res 234:1807–1818. https://doi.org/10.1007/s00221-016-4580-1

    Article  PubMed  Google Scholar 

  34. Levkovitz Y, Rabany L, Harel EV, Zangen A (2011) Deep transcranial magnetic stimulation add-on for treatment of negative symptoms and cognitive deficits of schizophrenia: a feasibility study. Int J Neuropsychopharmacol 14:991–996. https://doi.org/10.1017/S1461145711000642

    Article  PubMed  Google Scholar 

  35. Marra HLD, Myczkowski ML, Memória CM et al (2015) Transcranial magnetic stimulation to address mild cognitive impairment in the elderly: a randomized controlled study. Behav Neurol 2015:287843. https://doi.org/10.1155/2015/287843

    Article  Google Scholar 

  36. Fitzgerald PB, Brown TL, Marston NAU et al (2003) Transcranial magnetic stimulation in the treatment of depression: a double-blind, placebo-controlled trial. Arch Gen Psychiatry 60:1002–1008. https://doi.org/10.1001/archpsyc.60.9.1002

    Article  PubMed  Google Scholar 

  37. Farzan F, Barr MS, Sun Y et al (2012) Transcranial magnetic stimulation on the modulation of gamma oscillations in schizophrenia. Ann N Y Acad Sci 1265:25–35. https://doi.org/10.1111/j.1749-6632.2012.06543.x

    Article  PubMed  ADS  Google Scholar 

  38. Solé-Padullés C, Bartrés-Faz D, Junqué C et al (2006) Repetitive transcranial magnetic stimulation effects on brain function and cognition among elders with memory dysfunction. A randomized sham-controlled study. Cereb Cortex 16:1487–1493. https://doi.org/10.1093/cercor/bhj083

    Article  PubMed  Google Scholar 

  39. Ebrahimzadeh E, Asgarinejad M, Saliminia S, Soltanian-Zadeh H (2022) Repetitive Transcranial Magnetic Stimulation Enhances Brain Function and Cognition in Elders with Memory Dysfunction. Sixth Iranian Symposium on Brain Mapping Updates (ISBM 2022)

    Google Scholar 

  40. Ebrahimzadeh E, Asgarinejad M, Saliminia S et al (2021) Predicting clinical response to transcranial magnetic stimulation in major depression using time-frequency eeg signal processing. Biomed Eng - Appl Basis Commun 33:2150048. https://doi.org/10.4015/S1016237221500484

    Article  Google Scholar 

  41. Haraldsson HM, Ferrarelli F, Kalin NH, Tononi G (2004) Transcranial magnetic stimulation in the investigation and treatment of schizophrenia: a review. Schizophr Res 71:1–16. https://doi.org/10.1016/j.schres.2003.10.006

    Article  PubMed  Google Scholar 

  42. Rossi S, Rossini PM (2004) TMS in cognitive plasticity and the potential for rehabilitation. Trends Cogn Sci 8:273–279. https://doi.org/10.1016/s1364-6613(04)00115-9

    Article  PubMed  Google Scholar 

  43. Fox P, Ingham R, George MS et al (1997) Imaging human intra-cerebral connectivity by PET during TMS. NeuroReport 8:2787–2791

    Article  CAS  PubMed  Google Scholar 

  44. Eliasova I, Anderkova L, Marecek R, Rektorova I (2014) Non-invasive brain stimulation of the right inferior frontal gyrus may improve attention in early Alzheimer’s disease: a pilot study. J Neurol Sci 346:318–322. https://doi.org/10.1016/j.jns.2014.08.036

    Article  PubMed  Google Scholar 

  45. Little JT, Kimbrell TA, Wassermann EM et al (2000) Cognitive effects of 1- and 20-hertz repetitive transcranial magnetic stimulation in depression: preliminary report. Neuropsychiatry, Neuropsychol Behav Neurol 13:119–124

    CAS  PubMed  Google Scholar 

  46. Ebrahimzadeh E, Asgarinejad M, Soltanian-Zadeh H Machine Learning Techniques and Nonlinear Features of EEG signal to Predict Treatment Response to rTMS in Depression Fifth Iranian Symposium on Brain Mapping Updates (ISBM 2021), 1–5

  47. Padberg F, Zwanzger P, Thoma H et al (1999) Repetitive transcranial magnetic stimulation (rTMS) in pharmacotherapy-refractory major depression: comparative study of fast, slow and sham rTMS. Psychiatry Res 88:163–171. https://doi.org/10.1016/S0165-1781(99)00092-X

    Article  CAS  PubMed  Google Scholar 

  48. Rektorova I, Megova S, Bares M, Rektor I (2005) Cognitive functioning after repetitive transcranial magnetic stimulation in patients with cerebrovascular disease without dementia: a pilot study of seven patients. J Neurol Sci 229–230:157–161. https://doi.org/10.1016/j.jns.2004.11.021

    Article  PubMed  Google Scholar 

  49. Cotelli M, Calabria M, Manenti R et al (2011) Improved language performance in Alzheimer disease following brain stimulation. J Neurol Neurosurg Psychiatry 82:794–797. https://doi.org/10.1136/jnnp.2009.197848

    Article  PubMed  Google Scholar 

  50. Martis B, Alam D, Dowd S et al (2003) Neurocognitive effects of repetitive transcranial magnetic stimulation in severe major depression. Clin Neurophysiol 114:1125–1132

    Article  PubMed  Google Scholar 

  51. Ahmed MA, Darwish ES, Khedr EM et al (2012) Effects of low versus high frequencies of repetitive transcranial magnetic stimulation on cognitive function and cortical excitability in Alzheimer’s dementia. J Neurol 259:83–92. https://doi.org/10.1007/s00415-011-6128-4

    Article  PubMed  Google Scholar 

  52. Hwang JH, Kim SH, Park CS et al (2010) Acute high-frequency rTMS of the left dorsolateral prefrontal cortex and attentional control in healthy young men. Brain Res 1329:152–158. https://doi.org/10.1016/j.brainres.2010.03.013

    Article  CAS  PubMed  Google Scholar 

  53. Rounis E, Stephan KE, Lee L et al (2006) Acute changes in frontoparietal activity after repetitive transcranial magnetic stimulation over the dorsolateral prefrontal cortex in a cued reaction time task. J Neurosci 26:9629–9638. https://doi.org/10.1523/JNEUROSCI.2657-06.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Eisenegger C, Treyer V, Fehr E, Knoch D (2008) Time-course of “off-line” prefrontal rTMS effects — a PET study. Neuroimage 42:379–384. https://doi.org/10.1016/j.neuroimage.2008.04.172

    Article  CAS  PubMed  Google Scholar 

  55. Kim SH, Han HJ, Ahn HM et al (2012) Effects of five daily high-frequency rTMS on Stroop task performance in aging individuals. Neurosci Res 74:256–260. https://doi.org/10.1016/j.neures.2012.08.008

    Article  PubMed  Google Scholar 

  56. Ebrahimzadeh E, Asgarinejad M, Saliminia S, Soltanian-Zadeh H A Novel Task-Stimulus Approach by TMS on the Left DLPFC to Treat Attention Deficits in Patients and Increase Attention in Healthy Young People, Sixth Iranian Symposium on Brain Mapping Updates (ISBM 2022).

  57. Ebrahimzadeh E, Shams M, Seraji M, et al (2021) Localizing Epileptic Foci Using Simultaneous EEG-fMRI Recording: Template Component Cross-Correlation. Front Neurol VOL:12. https://www.frontiersin.org/articles/10.3389/fneur.2021.695997https://doi.org/10.3389/fneur.2021.695997

  58. Cui D, Jin J, Cao W et al (2022) Beneficial effect of high-frequency repetitive transcranial magnetic stimulation for the verbal memory and default mode network in healthy older adults. Front Aging Neurosci 14:845912. https://doi.org/10.3389/fnagi.2022.845912

    Article  PubMed  PubMed Central  Google Scholar 

  59. Chung SW, Rogasch NC, Hoy KE, Fitzgerald PB (2018) The effect of single and repeated prefrontal intermittent theta burst stimulation on cortical reactivity and working memory. Brain Stimul 11:566–574. https://doi.org/10.1016/j.brs.2018.01.002

    Article  PubMed  Google Scholar 

  60. Hoy KE, Bailey N, Michael M et al (2016) Enhancement of working memory and task-related oscillatory activity following intermittent theta burst stimulation in healthy controls. Cereb Cortex 26:4563–4573

    Article  PubMed  Google Scholar 

  61. Beynel L, Davis SW, Crowell CA et al (2019) Online repetitive transcranial magnetic stimulation during working memory in younger and older adults: a randomized within-subject comparison. PLoS One 14:e0213707. https://doi.org/10.1371/journal.pone.0213707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Beynel L, Davis SW, Crowell CA et al (2020) Site-specific effects of online rtms during a working memory task in healthy older adults. Brain Sci 10:255. https://doi.org/10.3390/brainsci10050255

    Article  PubMed  PubMed Central  Google Scholar 

  63. Tambini A, Nee DE, D’Esposito M (2017) Hippocampal-targeted theta-burst stimulation enhances associative memory formation. J Cogn Neurosci 30:1452–1472. https://doi.org/10.1162/jocn_a_01300

    Article  Google Scholar 

  64. Anderkova L, Pizem D, Klobusiakova P et al (2018) Theta burst stimulation enhances connectivity of the dorsal attention network in young healthy subjects: an exploratory study. Neural Plast 2018. https://doi.org/10.1155/2018/3106918

  65. Curtin A, Ayaz H, Tang Y et al (2019) Enhancing neural efficiency of cognitive processing speed via training and neurostimulation: an fNIRS and TMS study. Neuroimage 198:73–82. https://doi.org/10.1016/j.neuroimage.2019.05.020

    Article  PubMed  Google Scholar 

  66. Tulviste J, Goldberg E, Podell K et al (2019) BDNF polymorphism in non-veridical decision making and differential effects of rTMS. Behav Brain Res 364:177–182. https://doi.org/10.1016/j.bbr.2019.02.027

    Article  CAS  PubMed  Google Scholar 

  67. Sliwinska MW, Violante IR, Wise RJS et al (2017) Stimulating multiple-demand cortex enhances vocabulary learning. J Neurosci 37:7606–7618. https://doi.org/10.1523/JNEUROSCI.3857-16.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cui X, Ren W, Zheng Z, Li J (2020) Repetitive transcranial magnetic stimulation improved source memory and modulated recollection-based retrieval in healthy older adults. Front Psychol 11:1137. https://doi.org/10.3389/fpsyg.2020.01137

    Article  PubMed  PubMed Central  Google Scholar 

  69. Li Y, Wang L, Jia M et al (2017) The effects of high-frequency rTMS over the left DLPFC on cognitive control in young healthy participants. PLoS One 12:e0179430. https://doi.org/10.1371/journal.pone.0179430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Pulopulos MM, Allaert J, Vanderhasselt M-A et al (2022) Effects of HF-rTMS over the left and right DLPFC on proactive and reactive cognitive control. Soc Cogn Affect Neurosci 17:109–119. https://doi.org/10.1093/scan/nsaa082

    Article  PubMed  Google Scholar 

  71. Humaira A, Gao S, Gregory E et al (2021) A patient-oriented analysis of pain side effect: a step to improve the patient’s experience during rTMS? Brain Stimul 14:1147–1153. https://doi.org/10.1016/j.brs.2021.07.015

    Article  PubMed  Google Scholar 

  72. Bridge DJ, Cohen NJ, Voss JL (2017) Distinct hippocampal versus frontoparietal network contributions to retrieval and memory-guided exploration. J Cogn Neurosci 29:1324–1338. https://doi.org/10.1162/jocn_a_01143

    Article  PubMed  PubMed Central  Google Scholar 

  73. Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 1124:1–38. https://doi.org/10.1196/annals.1440.011

    Article  PubMed  ADS  Google Scholar 

  74. Utevsky AV, Smith DV, Huettel SA (2014) Precuneus is a functional core of the default-mode network. J Neurosci 34:932–940. https://doi.org/10.1523/JNEUROSCI.4227-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wu X, Wang L, Geng Z, et al (2021) Improved cognitive promotion through accelerated magnetic stimulation. eneuro 8:ENEURO.0392–20.2020. https://doi.org/10.1523/ENEURO.0392-20.2020

  76. Jung J, Lambon Ralph MA (2021) Enhancing vs. inhibiting semantic performance with transcranial magnetic stimulation over the anterior temporal lobe: frequency- and task-specific effects. Neuroimage 234:117959. https://doi.org/10.1016/j.neuroimage.2021.117959

    Article  PubMed  Google Scholar 

  77. Feng Y, Zhang JJ, Zhu J et al (2023) Does intermittent theta burst stimulation improve working memory capacity? A randomized controlled cross-over experiment. Behav Brain Res 436:114086. https://doi.org/10.1016/j.bbr.2022.114086

    Article  PubMed  Google Scholar 

  78. Kweon J, Vigne MM, Jones RN et al (2023) Practice makes plasticity: 10-Hz rTMS enhances LTP-like plasticity in musicians and athletes. Front Neural Circuits 17:1124221. https://doi.org/10.3389/fncir.2023.1124221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Li W, Li Y, Cao D et al (2023) TMS-EEG signatures of facilitated cognitive reappraisal in emotion regulation by left ventrolateral prefrontal cortex stimulation. Neuropsychologia 184:108560. https://doi.org/10.1016/j.neuropsychologia.2023.108560

    Article  PubMed  Google Scholar 

  80. Gao Y, Qiu Y, Yang Q et al (2023) Repetitive transcranial magnetic stimulation combined with cognitive training for cognitive function and activities of daily living in patients with post-stroke cognitive impairment: a systematic review and meta-analysis. Ageing Res Rev 87. https://doi.org/10.1016/j.arr.2023.101919

  81. Speer AM, Repella JD, Figueras S et al (2001) Lack of adverse cognitive effects of 1 Hz and 20 Hz repetitive transcranial magnetic stimulation at 100% of motor threshold over left prefrontal cortex in depression. J ECT 17:259–263. https://doi.org/10.1097/00124509-200112000-00005

    Article  CAS  PubMed  Google Scholar 

  82. Loo C, Sachdev P, Elsayed H et al (2001) Effects of a 2- to 4-week course of repetitive transcranial magnetic stimulation (rTMS) on neuropsychologic functioning, electroencephalogram, and auditory threshold in depressed patients. Biol Psychiatry 49:615–623. https://doi.org/10.1016/S0006-3223(00)00996-3

    Article  CAS  PubMed  Google Scholar 

  83. Rosenberg PB, Mehndiratta RB, Mehndiratta YP et al (2002) Repetitive transcranial magnetic stimulation treatment of comorbid posttraumatic stress disorder and major depression. J Neuropsychiatry Clin Neurosci 14:270–276. https://doi.org/10.1176/jnp.14.3.270

    Article  PubMed  Google Scholar 

  84. Januel D, Dumortier G, Verdon CM et al (2006) A double-blind sham controlled study of right prefrontal repetitive transcranial magnetic stimulation (rTMS): therapeutic and cognitive effect in medication free unipolar depression during 4 weeks. Prog Neuro-Psychopharmacol Biol Psychiatry 30:126–130. https://doi.org/10.1016/j.pnpbp.2005.08.016

    Article  Google Scholar 

  85. Fitzgerald PB, Hoy K, Daskalakis ZJ, Kulkarni J (2009) A randomized trial of the anti-depressant effects of low- and high-frequency transcranial magnetic stimulation in treatment-resistant depression. Depress Anxiety 26:229–234. https://doi.org/10.1002/da.20454

    Article  PubMed  Google Scholar 

  86. Hoffman RE, Gueorguieva R, Hawkins KA et al (2005) Temporoparietal transcranial magnetic stimulation for auditory hallucinations: safety, efficacy and moderators in a fifty patient sample. Biol Psychiatry 58:97–104. https://doi.org/10.1016/j.biopsych.2005.03.041

    Article  PubMed  Google Scholar 

  87. Fitzgerald PB, Benitez J, Daskalakis JZ et al (2005) A double-blind sham-controlled trial of repetitive transcranial magnetic stimulation in the treatment of refractory auditory hallucinations. J Clin Psychopharmacol 25:358–362

    Article  PubMed  Google Scholar 

  88. Kang JI, Kim CH, Namkoong K et al (2009) A randomized controlled study of sequentially applied repetitive transcranial magnetic stimulation in obsessive-compulsive disorder. J Clin Psychiatry 70:1645–1651. https://doi.org/10.4088/JCP.08m04500

    Article  PubMed  Google Scholar 

  89. Kim BR, Kim DY, Ho Chun M et al (2010) Effect of repetitive transcranial magnetic stimulation on cognition and mood in stroke patients: a double-blind, sham-controlled trial. Am J Phys Med Rehabil 89:362–368. https://doi.org/10.1097/PHM.0b013e3181d8a5b1

    Article  PubMed  Google Scholar 

  90. Peterchev AV, Wagner TA, Miranda PC et al (2012) Fundamentals of transcranial electric and magnetic stimulation dose: definition, selection, and reporting practices. Brain Stimul 5:435–453. https://doi.org/10.1016/j.brs.2011.10.001

    Article  PubMed  Google Scholar 

  91. Blank RH (2015) Cognitive enhancement: social and public policy issues. Cogn Enhanc Soc Public Policy Issues 1–144. https://doi.org/10.1007/978-1-137-57248-6

  92. Blank RH (2016) Introduction to cognitive enhancement. Cogn Enhanc 1–41. https://doi.org/10.1007/978-1-137-57248-6_1

  93. Miah A (2011) Ethical issues raised by human enhacement. Values ethics 21st century. https://www.bbvaopenmind.com/en/articles/ethics-issues-raised-by-human-enhancement/

  94. Xu M, Nikolin S, Samaratunga N et al (2023) Cognitive enhancement following offline high-frequency repetitive transcranial magnetic stimulation (HF-rTMS) in healthy populations: a systematic review and meta-analysis. Brain Stimul 16:258. https://doi.org/10.1016/j.brs.2023.01.422

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

MA and EE contributed to the conception and design of the work. MA, SS, EE, and SMS prepared the literature database and drafted the manuscript. EE, SMS, and HSZ revised critically the manuscript for important intellectual content. All authors read and approved the final manuscript and HSZ provided approval for publication of the content.

Corresponding authors

Correspondence to Marzieh Saviz or Elias Ebrahimzadeh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asgarinejad, M., Saviz, M., Sadjadi, S.M. et al. Repetitive transcranial magnetic stimulation (rTMS) as a tool for cognitive enhancement in healthy adults: a review study. Med Biol Eng Comput 62, 653–673 (2024). https://doi.org/10.1007/s11517-023-02968-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-023-02968-y

Keywords

Navigation